Полосы равной толщины и равного наклона.

Классическим примером полос равной толщины являются кольца Ньютона. Они наблюдаются при отражении света от верхней и нижней границ тонкой воздушной прослойки, образованной поверхностями, соприкасающихся друг с другом толстой плоскопараллельной стеклянной пластинки и плосковыпуклой линзы с большим радиусом кривизны (рис. 32.4).

Большой радиус кривизны линзы делает поверхности пластинки и линзы,

обращенные друг к другу практически параллельными. Тем более, что

 


       
 
 
   

 


являются когерентными при малой толщине прослойки h (длина когерентности должна быть больше 2h), поэтому при их сложении будет иметь место интерференция. Поскольку интерференция наблюдается в малой области вблизи точки касания О линзы и плоской стеклянной пластинки, поверхности линзы и пластинки здесь можно считать параллельными, а падающий и отраженный лучи (1, 2, 3) направленными вдоль одной прямой.

На радиусе r вдоль окружности толщина прослойки h будет одинаковой, и в этом случае наблюдаются интерференционные полосы равной толщины, имеющие форму колец с центром в точке касания линзы О. Эта интерференционная картина была впервые описана в 1675 г. Ньютоном и называется кольцами Ньютона.

Из рисунка 32.4 видно, что оптическая разность хода интерферирующих волн 2 и 3 Δ = 2hn +λ /2.

Коэффициент преломления воздуха n = 1. Слагаемое λ /2 возникает из-за того, что при отражении от оптически более плотной среды волны 3 (от стекла) оптический ход волны скачком увеличивается на λ /2. В том месте воздушного зазора, где выполняется условие

Δ = 2d + λ /2 = mλ (условие максимума),

наблюдаются светлые кольца, а там, где

Δ = 2d + λ /2 = (2m + 1) λ /2 (условие минимума),

возникают темные кольца. В месте соприкосновения линзы с плоскостью

       
   
 
 

 


вид концентрических колец. Таким образом, полосы равной толщины – это интерференционные полосы, возникающие в результате интерференции когерентных волн от мест с одинаковой толщиной.

Полосы равного наклона интерференционные полосы, возникающие в результате наложения лучей, падающих на плоскопараллельную пластинку под одинаковыми углами.

Рассмотрим оптическую схему на рис. 32.6. Почти монохроматический

       
   
 


задней поверхности пластины, снова преломляясь, попадает на экран (2-2΄). Если длина когерентности >>2hn, где h – толщина пластины, а n – показатель преломления, то волны пучка, сходящиеся в некоторой точке экрана. например т. А, будут интерферировать. На схеме рис. 32.6 это волны, соответствующие лучам 1 и 2. Поскольку расходящийся от линзы пучок является коническим, то интерференционные полосы будут иметь вид окружностей. А так как интерференционные максимумы (а также минимумы) будут располагаться в местах, соответствующих одинаковому углу падения лучей (одинаковому наклону их к поверхности), то получающаяся картина называется полосами равного наклона.

Вопросы для самоконтроля.

 

1. В чем состоит явление интерференции?

2. Что такое когерентность?

3. В чем состоит временная когерентность?

Каков смысл времени и длины когерентности?

4. В чем состоит пространственная когерентность?

Каков смысл радиуса когерентности?

5. Что называется оптической длиной пути

и оптической разностью хода?

6. Каковы условия получения интерференционных максимумов и мини-

мумов при положении света от двух когерентных источников?

7. Как получаются полосы равной толщины и равного наклона?

 

Лекция № 33

 








Дата добавления: 2015-06-12; просмотров: 2354;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.009 сек.