Закон достаточного основания

Всякое свойство предмета, отличающее этот предмет от всех других предметов, существует в данном предмете не само по себе, но лишь потому, что существует нечто такое, чем это свойство обуславливается и без чего оно не могло бы существовать. Этой зависимостью предмета от условий определяется и наше мышление о предмете. Оно также не может мыслить о предмете никакого утверждения, которое не было бы на чём-либо основано. Эта черта мышления называется доказательностью.

Требования доказанности, обоснованности мысли выражает закон достаточного основания, который формулируется следующим образом: всякая мысль признаётся истинной, если она имеет достаточное основание. Формула закона: «Если есть В, то есть и его основание А».

Достаточным основанием какой-либо мысли может быть любая другая уже проверенная и признанная истинной мысль, из которой с необходимостью вытекает истинность данной мысли.

Логическое основание надо отличать от реального основания и от причинно-следственной связи.

Этот закон выражает наличие для каждой истины достаточного основания лишь в самом общем виде. Вопрос о специальном характере основания требует в каждом случае особого рассмотрения.

Логические законы служат обязательной нормой всякого правильного мышления. В практике человеческого мышления законы формальной логики действуют не изолированно, а во взаимосвязи. Если нарушаются требования одного какого-нибудь закона, становится невозможным применение другого.


1.2.2. (1) Понятие

1. Сущность понятия.

2. Виды понятий.

3. Отношения между понятиями.

4. Логические действия над понятиями. Обобщение и ограничение понятий.

5. Определение понятия.

6. Правила явного определения.

7. Деление понятий.








Дата добавления: 2015-06-10; просмотров: 554;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.004 сек.