Основные факторы риска генно-инженерной деятельности для здоровья человека и окружающей среды. Принцип принятия мер предосторожности.
Использование достижений современной биотехнологии позволило прийти к выводу, что, с одной стороны, они содействуют решению мировых проблем благосостояния людей. С другой стороны, генетическая инженерия – действительно революционная технология, которая открывает немыслимые ранее возможности направленной модификации генетического материала. В связи с этим у людей невольно возникает вопрос: а насколько безопасны организмы, созданные с помощью этой технологии для здоровья человека и окружающей среды?
Принимая во внимание этот второй аспект, при использовании достижений современной биотехнологии определяющим стал принцип принятия мер предосторожности. Источники появления и применения этого принципа проистекают из экологического общественного движения 70-х годов прошлого века, когда он был сформулирован как реакция на скептицизм относительно возможности научной оценки риска и предотвращения вредных последствий применения сложных технологий. По сути, принцип определяет, что перед лицом научной неопределенности или отсутствия необходимых знаний лучше ошибиться в сторону избыточности мер безопасности по отношению к здоровью человека и окружающей среде, чем ошибиться в оценке риска. В настоящее время этот принцип содержат более 20 международных законов, договоров, протоколов и конвенций, в том числе Картахенский протокол по биобезопасности к Конвенции о биологическом разнообразии. Приведенные в них формулировки принципа принятия мер предосторожности не требуют доказательства абсолютной безопасности технологии, но скорее предполагают ее ограничение в случае, если уровень научной неопределенности относительно потенциального риска является значительным, а возможности управления риском — недостаточными. При наличии обоснованных научных предположений о том, что новый процесс или продукт может быть опасным, он не должен внедряться до тех пор, пока не будут получены доказательства того, что риск невелик, управляем и преимущества технологии его «перевешивают». Применение принципа предосторожности в этом смысле должно продемонстрировать, не абсолютным образом, но выше уровня обоснованных сомнений, что предлагаемая заявителем генно-инженерная деятельность является безопасной.
Для решения этой задачи создана международная структура и структуры биобезопасности отдельных государств, которые включают:
- законодательную базу, регулирующую генно-инженерную деятельность;
- административную систему, которая исполняет и контролирует законный порядок осуществления генно-инженерной деятельности;
- систему обоснованного принятия решений, которая предполагает оценку и предупреждение соответствующего риска генно-инженерной деятельности;
- механизм информирования и участия общественности в принятии решений о разрешении генно-инженерной деятельности и контроле над их исполнением.
Факторы риска генно-инженерной деятельности – это возможные прямые и непрямые неблагоприятные воздействия генно-инженерных организмов или продуктов, изготовленных из них (включающих их), на здоровье человека и/или окружающую среду, обусловленные эффектом вставки рекомбинантной ДНК, функционирования трансгенов и их передачей от генно-инженерных организмов другим организмам. В итоге оценки риска должны быть получены ответы на следующие вопросы: является ли потенциальный риск генно-инженерной деятельности приемлемым по сравнению с выгодами, получаемыми в результате ее осуществления; есть ли регуляторные механизмы, адекватные для безопасного осуществления генно-инженерной деятельности.
Различают факторы риска генно-инженерной деятельности для здоровья человека и животных в замкнутых системах и в хозяйственной деятельности, связанной с высвобождением генно-инженерных организмов в окружающую среду (высвобождение патогенных генно-инженерных организмов в окружающую среду не предусматривается). К числу потенциально опасных эффектов при работе с ГМО в замкнутых системах относят:
- токсичные и/или аллергенные эффекты генно-инженерных организмов или продуктов их метаболизма;
- вероятные вредные воздействия целевых продуктов генно-инженерной деятельности;
- сравнительная патогенность генно-инженерных микроорганизмов по сравнению с донором, реципиентом;
- способность к микробному обсеменению;
- факторы патогенности генно-инженерного организма (тип вызываемого заболевания; механизм патогенности, включающий способ проникновения патогенного организма и вирулентность; инфекционная доза и т.д.).
Для оценки риска генно-инженерной деятельности исходят из того, что патогенные для человека и животных организмы не должны высвобождаться в окружающую среду ни при каких обстоятельствах. Обязательными условиями оценки риска являются:
- работа с патогенными организмами должна проходить в замкнутых системах;
- соблюдение специальных защитных мер (физических, химических, биологических);
- охрана здоровья и безопасности следующих категорий людей: предполагаемых пользователей продуктов генно-инженерной деятельности; персонала лабораторий или предприятий, которые занимаются генно-инженерной деятельностью; потенциально контактирующих; населения региона в случае случайного высвобождения генно-инженерных организмов.
Базой для процедуры оценки риска патогенности в рамках генно-инженерной деятельности является Директива Европейского Союза 90/219/ЕЕС от 23 апреля 1990 года.
Факторы риска генно-инженерной деятельности для здоровья человека в хозяйственной деятельности связаны, прежде всего, с потреблением продуктов, полученных из ГМО или произведенных ими. К числу потенциальных рисков для здоровья человека относят:
- синтез новых белков – продуктов трансгенов, которые могут быть токсичными и/или аллергенными;
- изменение активности отдельных генов ГМО, в результате чего может произойти ухудшение потребительских свойств продуктов питания, получаемых из них;
- горизонтальная передача трансгенов устойчивости к антибиотикам микроорганизмам пищеварительного тракта.
Оценка безопасности генетически модифицированных продуктов питания основывается на принципе «существенной эквивалентности», разработанном Организацией экономического сотрудничества и развития. Его суть заключается в том, что оценивается не уровень безопасности новых продуктов питания, а его изменение в сравнении с традиционными пищевыми аналогами с длительной историей безопасного использования. Так, например, оценка потенциальной токсичности новых продуктов питания заключается в следующем. Если исследуемое вещество – известный компонент растительной пищи с длительной историей безопасного использования, то исследования токсичности необязательны. В других случаях придерживаются такого плана:
1. Определение концентрации потенциальных токсинов в съедобных частях растений;
2. Установление удельного веса данного продукта в пищевом рационе определенных групп населения;
3. Сравнение (для белков) их аминокислотной последовательности с таковой у известных токсинов и пищевых антагонистов по электронным базам данных;
4. Оценка стабильности новых веществ к термической обработке;
5. Определение скорости разрушения потенциальных токсинов в желудочно-кишечном тракте (в модельных системах);
6. Анализ уровня токсичности новых веществ в модельных системах (культура клеток in vitro);
7. Анализ токсичности в экспериментах по принудительному скармливанию лабораторным или домашним животным пищи, содержащей продукты, полученные из изучаемого генетически модифицированного организма в течение длительного времени (1–2 года) либо в течение короткого времени, но с использованием высоких концентраций изучаемых продуктов (около двух недель).
Кроме рисков для здоровья человека при оценки безопасности ГМО также рассматриваются риски возможных неблагоприятных эффектовна окружающую среду:
1. Разрушительное влияние на биологические сообщества и утрата ценных биологических ресурсов в результате засорения местных видов генами, перенесенными от генетически модифицированных организмов (в результате возможно увеличение численности одних видов и снижение численности других);
2. Создание новых паразитов (сорняков), усиление вредоносности уже существующих на основе самих генно-модифицированных организмов или в результате переноса трансгенов другим видам (появление суперсорняков и супервредителей);
3. Выработка веществ – продуктов трансгенов, которые могут быть токсичными для организмов, живущих или питающихся на генетических модифицированных организмах и не являющихся мишенями трансгенных признаков (например, пчел);
4. Неблагоприятное воздействие на экосистемы токсичных веществ, производных неполного разрушения опасных химикатов, например, гербицидов (первые генно-модифицированные организмы были устойчивы к гербицидам. Появилось опасение, что их использование может привести к отрицательному воздействию на экосистемы. Но практика использования гербицидоустойчивых генетически модифицированных сортов показала обратное).
Дата добавления: 2015-06-10; просмотров: 2196;