ПОСТАНОВКА ПРОБЛЕМЫ
Понятие алгоритма, введенное в предыдущем параграфе, можно назвать понятием алгоритма в интуитивном смысле. Оно имеет нечеткий, неформальный характер, ссылается на некоторые точно не определенные, но интуитивно понятные вещи. Например, при определении и обсуждении свойств алгоритма мы исходили из возможностей некоторого исполнителя алгоритма. Его наличие предполагалось, но ничего определенного о нем не было известно. Говоря языком математики, ни аксиоматического, ни исчерпывающего конструктивного определения исполнителя мы так и не дали.
Установленные в предыдущем параграфе свойства алгоритмов следует называть эмпирическими. Они выявлены на основе обобщения свойств алгоритмов различной природы и имеют прикладной характер. Этих свойств достаточно для практического программирования, для создания обширного круга программ для компьютеров, станков с ЧПУ, промышленных роботов и т.д. Однако, как фундаментальное научное понятие алгоритм требует более обстоятельного изучения. Оно невозможно без уточнения понятия «алгоритм», более строгого его описания или, как еще говорят, без егоформализации.
Известно несколько подходов к формализации понятия «алгоритм»:
• теория конечных и бесконечных автоматов;
• теория вычислимых (рекурсивных) функций;
• λ-исчисление Черча.
Все эти возникшие исторически независимо друг от друга подходы оказались впоследствии эквивалентными. Главная цель формализации понятия алгоритма такова: подойти к решению проблемы алгоритмической разрешимости различных математических задач, т.е. ответить на вопрос, может ли быть построен алгоритм, приводящий к решению задачи. Мы рассмотрим постановку этой проблемы и некоторые результаты теории алгоритмической разрешимости задач, но вначале обсудим формализацию понятия алгоритма в теории автоматов на примере машин Поста, Тьюринга, а также нормальных алгоритмов Маркова, а затем - основы теории рекурсивных функций. Идеи λ-исчислений Черча реализованы в языке программирования LISP (глава 3).
Вместе с тем, формально определенный любым из известных способов алгоритм не может в практическом программировании заменить то, что мы называли алгоритмами в предыдущем параграфе. Основная причина состоит в том, что формальное определение резко сужает круг рассматриваемых задач, делая многие практически важные задачи недоступными для рассмотрения.
Дата добавления: 2015-06-05; просмотров: 789;