Корневая система как орган поглощения воды.
Водообмен у растений складывается из трех этапов: 1) поглощения воды корнями, 2) передвижения ее по сосудам, 3) транспирации, т. е. испарения воды листьями. Каждый из этих этапов в свою очередь состоит из нескольких взаимосвязанных процессов.
Хотя небольшие количества воды могут поглощаться и надземными частями растений, практически вся вода и минеральные соли поступают в организм высших растений через корневую систему из почвы.
Основной функцией корня является всасывание воды из почвы с растворенными в ней элементами минерального питания.
Зона наиболее интенсивного поглощения воды совпадает с зоной развития корневых волосков, за счет которых увеличивается всасывающая поверхность корня. Например, у 4-месячного растения ржи, выращенного в оптимальных условиях, насчитывалось в среднем 13 800 000 корней с обшей площадью поверхности 232 м2, количество живых корневых волосков — 14 млрд. с площадью поверхности 399 м2. Суммарная площадь корней и корневых волосков составляла 631 м2 и они размещались в 0,05 м3 почвы. В данном случае общая поверхность всей корневой системы в 130 раз превышала поверхность надземных частей того же самого растения. Эпидермальные клетки, лишенные волосков, поглощают воду с такой же скоростью на единицу поверхности, как и клетки, несущие корневые волоски. Выше зоны корневых волосков скорость всасывания воды снижается из-за опробковения клеток. Однако и через опробковевшие участки корней вода частично транспортируется. У растений, обладающих микоризой, последняя также выполняет функцию дополнительной поглощающей поверхности, особенно в более старых частях корня.
*Рост корня, его ветвление продолжаются в течение всей жизни растительного организма, т. е. практически он не ограничен. Меристемы — образовательные ткани — расположены на верхушке каждого корня. Доля меристематических клеток сравнительно велика.
Рост корней отличается большой скоростью. Считается, что одно растение риса в благоприятных условиях может образовать до 5 км новых корней в сутки. За счет этого прироста корневой системы в растение может дополнительно поступать 1,5 л воды. Важное значение имеет явление гидротропизма, при котором рост корневой системы как бы идет из более иссушенных слоев почвы к более влажным. В зависимости от типа растений распределение корневой системы в почве различно. У некоторых растений корневая система проникает на большую глубину, у других главным образом распространяется в ширину.
Рис.5. Схема строения корня:
А – продольный разрез: 1 – корневой чехлик; 2 – меристема; 3 – зона растяжения; 4 – зона корневых волосков; 5 – зона ветвления; Б- поперечный разрез: 1 – ризодерма; 2 – корневой волосок, 3 – паренхима, 4 – эндодерма; 5 – пояски Каспари, 6 – перицикл, 7 – флоэма, 8 – ксилема. Стрелки – пути передвижения веществ, поглощаемых из наружного раствора. Сплошные стрелки – путь раствора по симпласту; прерывистые – по апопласту.
С физиологической точки зрения корневая система неоднородна. Далеко не вся поверхность корня участвует в поглощении воды. В каждом корне различают несколько зон (рис. 5), правда, не всегда все зоны выражены одинаково четко. Окончание корня снаружи защищено корневым чехликом, напоминающим округлый колпачок, состоящий из живых тонкостенных продолговатых клеток. Корневой чехлик служит защитой для точки роста. Клетки корневого чехлика слущиваются, что уменьшает трение и способствует проникновению корня в глубь почвы. Под корневым чехликом расположена меристематическая зона. Меристема состоит из многочисленных мелких, усиленно делящихся, плотно упакованных клеток, почти целиком заполненных протоплазмой. Следующая зона — зона растяжения. Здесь клетки увеличиваются в объеме (растягиваются). Одновременно в этой зоне появляются дифференцированные ситовидные трубки. Затем следует зона корневых волосков. При дальнейшем увеличении возраста клеток, а также расстояния от кончика корня корневые волоски исчезают, начинается кутинизация и опробковение клеточных оболочек. Поглощение воды происходит главным образом клетками зоны растяжения и зоны корневых волосков. Некоторое количество воды может поступать и через опробковевшую зону корня. Это главным образом наблюдается у деревьев. В этом случае вода проникает через чечевички или поранения.
Поверхность корня в этой зоне корневых волосков покрыта ризодермой. Это однослойная ткань с двумя видами клеток, формирующими и не формирующими корневые волоски. Корневые волоски растут путем растяжения клеточной оболочки, которое происходит с большой скоростью (0,1 мм/ч). Для их роста очень важно присутствие кальция.
У большинства растений клетки ризодермы обладают тонкими стенками. Вслед за ризодермой до перицикла идут клетки коры. Кора состоит из нескольких слоев паренхимных клеток. Важной особенностью коры является развитие системы крупных межклетников. На границе коры и центрального цилиндра развивается один слой плотно прилегающих друг к другу клеток — эндодерма, для которой характерно наличие поясков Каспари. Цитоплазма в клетках эндодермы плотно прилегает к клеточным оболочкам. По мере старения вся внутренняя поверхность клеток эндодермы, за исключением пропускных клеток, покрывается суберином. При дальнейшем старении сверху могут накладываться еще слои. По-видимому, именно клетки эндодермы служат основным физиологическим барьером для передвижения как воды, так и питательных веществ. В центральном цилиндре расположены проводящие ткани корня. Обычно поглощающая зона составляет около 5 см в длину. Величина ее зависит от скорости роста корня в целом. Чем медленнее растет корень, тем зона поглощения короче.
Корневые системы изменяются под влиянием тех или иных условий. Хорошо показано влияние температуры на формирование корневых систем. Как правило, оптимальная температура для роста корневых систем несколько ниже по сравнению с ростом надземных органов того же растения. Все же сильное понижение температуры заметно тормозит рост корней и способствует образованию толстых, мясистых, мало ветвящихся корневых систем.
Большое значение для формирования корневых систем имеет влажность почвы. Распределение корней по горизонтам почвы часто определяется распределением воды в почве. Обычно в первый период жизни растительного организма корневая система растет чрезвычайно интенсивно и, как следствие, скорее достигает более влажных слоев почвы. Некоторые растения развивают поверхностную корневую систему. Располагаясь близко к поверхности, сильно ветвящиеся корни перехватывают атмосферные осадки. В засушливых районах часто глубоко и мелко укореняющиеся виды растений растут рядом. Первые обеспечивают себя влагой за счет глубоких слоев почвы, вторые за счет усвоения выпадающих осадков. Важное значение для развития корневых систем имеет аэрация. Именно недостаток кислорода является причиной плохого развития корневых систем на заболоченных почвах. Растения, приспособленные к росту на плохо аэрируемых почвах, имеют в корнях систему межклетников, которые вместе с межклетниками в стеблях и листьях составляют единую вентиляционную систему.
Большое значение имеют условия питания. Показано, что внесение фосфорных удобрений способствует углублению корневых систем, а внесение азотных удобрений — их усиленному ветвлению.
Состояние воды в почве.Почва — многофазное тело, состоящее из четырех главных компонентов: твердых минеральных
частиц, opi анического вещества (гумуса), почвенного раствора и почвенного воздуха. Минеральные частицы и гумус образуют почвенную структуру, а вода и воздух заполняют полости этой структуры.
Способность почвы удерживать воду зависит от ее состава и свойств. Относительно крупные кристаллы силикатов (песок) связывают воду в значительной степени. Разнообразные глинистые минералы (алюмосиликаты) и гетерогенные гумусовые вещества, будучи коллоидами, могут удерживать значительные количества гидратационной воды. Такая вода условно называется связанной. Вода, содержащаяся в капиллярах почвы, может условно считаться свободной. Определенное количество воды входит в состав минеральных компонентов почвы. Эта вода химически связана и практически недоступна для растений.
В пределах значений влажности, важных с биологической точки зрения, главную роль играют два механизма удержания воды в почве: 1) за счет сил, действующих на разделе фаз жидкость — воздух, при этом поверхностное натяжение уравновешивает силы, способствующие удалению воды; 2) благодаря силам, действующим на поверхностях раздела жидкой и твердой фаз.
Существуют различные термины, применяемые для обозначения доступности почвенной влаги. При поступлении воды в сухую почву она вначале впитывается очень быстро. Затем скорость просачивания воды в нижние горизонты становится все медленнее. Когда скорость нисходящего движения воды оказывается резко сниженной, влажность почвы достигает уровня, называемого полевой влагоемкостью. Если понятие «полевая влагоемкость» широко применяется для характеристики максимальных размеров запаса почвенной влаги, который может быть использован для роста растений, то влажность устойчивого завядания служит показателем минимальных размеров такого запаса. Под влажностью устойчивого завядания понимают такую влажность почвы, при которой растения остаются увядшими до тех пор, пока в почву не подается вода. Влажность почвы, при которой наступает завяда-ние различных растений, варьирует незначительно. Влажность устойчивого завядания представляет собой нижнюю границу того интервала влажности почвы, в котором возможен рост растений.
Под доступной для растений почвенной влагой понимается то количество воды, которое накапливается в почве от уровня влажности устойчивого завядания до полевой влагоемкости. В среднем легкодоступная для растений влага удерживается в почве силой до 0,5 МПа, среднедоступная - до 1,0—1,2 МПа, а труднодоступная - до 2,5-3,0 МПа. Определение доступной почвенной влаги имеет большое практическое значение для выяснения сельскохозяйственной ценности почв, поскольку известно, что в умеренной зоне за вегетационный период растения испаряют больше воды, чем ее выпадает за это время в виде атмосферных осадков. При этом растения используют накопленную с весны доступную почвенную влагу. Вода в по чве передвигается благодаря разности водных потенциалов между различными частями системы (от более высокого к более низкому потенциалу). По мере иссушения почвы скорость движения воды в ней значительно замедляется.
Дата добавления: 2015-05-30; просмотров: 4498;