Методы поверочных расчетов

 

Рассмотренные модели разрушения имеют существенное значе­ние для разработки статистической теории хрупкого разрушения, по которой прочность тела целиком зависит от прочности наибо­лее дефектного элемента, а свойства первичных элементов подчи­няются некоторому распределению вероятностей.

Вернемся к условию предельного состояния материала в ло­кальной области

φ = φb ,

которое, как было показано, можно представить в виде

σred = σb.

Условие невозникновения предельного состояния (условие прочности) в материале в рассматриваемой точке тела имеет фо­рму неравенства

σred < σb ,

которое отражает сущность так называемого поверочного расчета. Это условие, однако, не адекватно условию безопасного состояния, что связано со следующими обстоятельствами: а) заданные нагрузки не вполне достоверны (могут быть перегрузки); б) спо­собы определения усилий в элементах конструкций сопряжены с некоторыми условностями; в) размеры сечений имеют некоторые до­пуски при изготовлении и могут меняться в течение срока службы конструкции (износ, коррозия и т.д.); г) величины, характеризу­ющие прочность и пластичность материала, могут быть разными для разных партий материала одной и той же категории; д) в не­которых случаях учет концентрации напряжений связан с рядом грубых допущений; е) необходимо считаться с особенностями дей­ствия динамических нагрузок и некоторыми другими факторами.

В целях соблюдения безопасности для каждой конструкции в условия прочности вводятся не величины σb ,τb, а их доли, по­лучаемые делением на некоторое число n, называемое коэффициен­том запаса прочности (или коэффициентом безопасной прочности). Его можно представить в виде произведения частных коэффициен­тов запаса прочности, соответствующих каждому из приведенных выше обстоятельств.

Установлением величин коэффициентов запаса занимаются государствен-ные нормирующие органы, издающие соответствующие но­рмы, которыми и руководствуются при расчетах сооружений.

Напряжения, получаемые делением σbb) на n, называются допускаемыми и обозначаются σadmadm ).

Таким образом, условие безопасной прочности (надежности) по методу допускаемых напряжений в общем случае записывается в следующем виде:

σred ≤ σadm,

а в частных случаях:

σb ≤ σadm;

τb ≤ τadm.

Коэффициенты, вводимые в нормы, основаны на результатах эксперимен-тов и имеют вероятностную сущность. Рассмотрим условие

φ ≤ φb

и будем считать φ случайной величиной. Положим далее, что кри­вая распределения φ каким-то образом определена. Тогда по ин­тегральной кривой распределения Pφ можно найти квантиль φb ве­роятности N выполнения неравенства φ ≤ φb (рис.6.3). Эту веро­ятность можно назвать надежно- Рис. 6.3

стью конструкции по отношению к рассматриваемому условию. Очевидно, надежность N должна быть близ­кой к единице.

Обратимся к формуле

σbσ = s,

где σb – предельное напряжение, являющееся случайной величиной; σ – случайные напряжения в нагруженном элементе; s – резерв прочности.

Необходимым требованием является условие положительности резерва прочности, т.е. условие невозникновения предельного состояния: s > 0.

По формулам теории вероятностей при учете, что σb иσ–независимые случайные величины, можно найти центр распределе­ния и дисперсию резерва прочности :

.

Коэффициент запаса прочности определим как отношение цен­тров распределения σb и σ, т.е.

 

Если предельным состоянием материала в локальной области
является хрупкое разрушение, то это может представить опасность для всей конструкции в силу развития области разрушения. В этой ситуации использо-вание метода допускаемых напряжений является вполне обоснованным.

Если же предельным состоянием материала в локальной обла­сти является наступление текучести, то разрастание охваченной ею области возможно лишь при снятии стеснения со стороны мате­риала, находящегося в упругом состоянии. Именно поэтому расчет по допускаемым напряжениям в случае пластического состояния материала не является совершенным, поскольку предельное состо­яние материала в окрестности точки не представляет опасности для всей конструкции.

В этом случае более совершенным является метод разрушаю­щих нагрузок. В качестве условия безопасной прочности ставится требование, чтобы наибольшая нагрузка на конструкцию не превы­шала некоторой допускаемой нагрузки Nadm, которая равна разру­шающей нагрузке, деленной на коэффициент запаса прочности n >1. Этот коэффициент принимается на основе соображений, аналогич­ных рассмотренным в методе допускаемых напряжений.

Расчет по разрушающим нагрузкам был внедрен в нашей стра­не в 1938 г. применительно к строительным конструкциям. Это приблизило результаты расчета к фактической несущей способно­сти конструкций, но не дало исчерпывающего представления о степени их надежности.

Естественным завершением инженерного поиска в этом напра­влении был переход к методу расчета по предельным состояниям, который был осуществлен в нашей стране в 1955 г. по предложению Н.С.Стрелецкого. Этот метод положен в основу отечественных норм проектирования строительных конструкций.

Согласно ему предельным считается состояние, при котором конструкция перестает удовлетворять эксплуатационным требова­ниям. Современные отечественные нормы проектирования отмечают две группы предельных состояний. Первая группа квалифицирует непригодность конструкции к эксплуатации по причине потери не­сущей способности, вторая − непригодность к эксплуатации по другим причинам, таким, как чрезмерные деформации, образование и чрезмерное раскрытие трещин.

Расчет по первой группе предельных состояний обеспечивает надежность конструкции в отношении хрупкого, вязкого и иного вида разрушения, потери устойчивого равновесия.

Расчет по второй группе предельных состояний производится по двум условиям:

1) перемещения элемента конструкции под нагрузкой не дол­жны превышать предельного значения, определяемого нормами;

2) трещиностойкость конструкции должна быть обеспечена на соответствующем уровне в зависимости от условий, в которых она работает; речь идет о недопущении образования трещин или допускаемых ограничениях по ширине их непродолжительного и продол­жительного раскрытия.

Поверочный расчет конструкции по предельным состояниям основывается на условии

φ ≤ φcal ,

где φcal – расчетный фактор, отклоняющийся от предельного значения φb.

Важным преимуществом нового метода является отказ от детерминистического подхода к нагрузкам и механическим свойствам материалов, выявление их вероятностной природы.

Наиболее часто повторяющаяся нагрузка называется нормативной (Nn). Она устанавливается нормами с учетом вероятности превышения ее среднего значения. Наибольшая нагрузка, которая может проявиться за время существования конструкции, называет­ся расчетной (N) и вычисляется по формуле

N = Nn γf ,

где γf – коэффициент надежности по нагрузке.

В случае нагрузки от собственной массы γf = 1,05...1,3 (в зависимости от вида материала конструкции и условий его изго­товления); в случае снеговой нагрузки γf = 1,4...1,6. В ряде случаев коэффициент γf может быть меньше 1, если это ухудшает условия работы конструкций. Например, в целях предотвращения потери равновесия тела, вызываемой опрокидыванием или скольже­нием, принимают для собственной массы γf = 0,9. Коэффициент на­дежности по нагрузке при расчете по второй группе предельных состояний принимается, как правило, равным единице.

Нормативное сопротивление Rn материала силовым воздей­ствиям определяется экспериментально путем выборочных испыта­ний образцов стандартных размеров и отражает по существу бра­ковочный минимум прочностных свойств материала. Вероятность, с которой обеспечивается нормативное сопротивление, должна со­ставлять не менее 95%. В зависимости от механических свойств величина Rn принимается по пределу текучести или по временному сопротивлению.

Наименьшая возможная величина сопротивления материала называется расчетным сопротивлением R, причем

R = Rn / γm,

где γm – коэффициент надежности по материалу.

Коэффициент γm учитывает изменчивость механических свойств материала и минусовые допуски при производстве элемен­тов конструкций. Он лежит в пределах 1,025...1,3.

Назовем остальные коэффициенты метода расчета по предель­ным состояниям. Коэффициент условий работы γc учитывает влия­ние конкретных условий работы конструкции, например, прибли­женный характер расчетных схем, условность предпосылок расче­та, агрессивность среды и другие факторы.

Коэффициент надежности по назначению γn учитывает степень ответствен-ности конструкции и значимость последствий наступле­ния тех или иных предельных состояний.

Как правило, на конструкцию действует несколько нагрузок. Вместе с тем их одновременное действие при наибольших величи­нах маловероятно. Например, трудно предположить одновременно ураганный ветер, наибольшую снеговую нагрузку и максимальную полезную нагрузку на конструкции здания. С целью приближения вводимых нагрузок к реальности используется коэффициент соче­таний nc <1.

Метод расчета по предельным состояниям, основанный на глубоком изучении степени нагружения и экспериментально-теоре­тическом исследова-нии действительной несущей способности кон­струкций, обеспечивает бóль-шую степень их надежности, чем ме­тод допускаемых напряжений или метод разрушающих нагрузок. Ши­рокие перспективы для снижения материалоемкос-ти конструкций открывает систематизация статистических данных по вопросам те­хнологии изготовления (возведения) и эксплуатации конструкций (сооруже-ний).








Дата добавления: 2015-05-28; просмотров: 1052;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.011 сек.