Мостовые схемы измерителей параметров элементов

Для измерения параметров элементов цепей методом сравнения применяют мосты. В сравнении измеряемой величины (сопротивление, индуктивность, емкость) с образцовой меры при помощи моста измеряют автоматически или вручную на переменном или постоянном токе. Мостовые схемы обладают высокой точностью, широким диапазоном измеряемых значений параметров элементов. На основе мостовых методов строят приборы, предназначенные для измерения какой-либо одной величины, так и универсальные. Существует несколько элементов мостовых схем RLC: четырехплечие, уравновешенные, неуравновешенные и процентные. В зависимости от вида мостовых схем количество входящих в ее состав ветвей (плеч) мосты можно разделить на: четырехплечие, многоплечие, Т-образные и т.д. наиболее распространенные четырехплечие (одинарные) мосты. Т-образные мосты обычно применят для измерения параметров электрических цепей на высоких и сверхвысоких частотах. В состав каждой мостовой схемы входят измеряемые параметры и переменные образцовые меры. В зависимости от соотношения между параметрами мостовой схемы может быть, а может и отсутствовать напряжение (ток), в результате чего мосты делятся на неуравновешенные (есть ток) и уравновешенные (нет тока).

Принцип действия четырехплечего (одинарного) моста.

Одинарный мост имеет 4 плеча (Z1,Z2,Z3,Z4), источник питания (U), ноль-индикатор. Если сопротивления таковы что точки А и В имеют равные потенциалы, то через ноль-индикатор отсутствует; в этом случае говорят что достигается равновесие моста. Z1*Z4=Z2*Z3 (1). Если Z4 неизвестное сопротивление, то его значение можно определить из условия равновесия Z4=Z2*Z3/Z1 (2). Отсюда следует, что равновесие не зависит от сопротивления ноль-индикатора, т.к. ток не течет через него, а также от напряжения и сопротивления источника питания. Таким образом, высокостабильный источник питания не требуется. Z3 – плечо сравнения, а отношение Z1/Z2 определяет диапазон изменения измеряемой величины. Чтобы охватить широкий диапазон известных импедансов мосты снабжают переключателем, которые изменяют сопротивление Z1 и Z2 в 10 раз. Сопротивление моста в общем случае имеет комплексный характер: Z1=Z1*ejf1, Z2=Z2*ejf2, Z3=Z3*ejf3, Z4=Z4*ejf4.

Zj – модули комплексных сопротивлений

fi – соответствующая фаза

φ1+φ4=φ2+φ3 (3)

Когда равновесие моста определяется выражениями 1 и 3 тогда мост переменного тока нуждается в регулировке двух независимых параметров, чтобы обеспечить равновесие модулей и фазовых углов.

Чувствительность моста очень важный параметр и определяется, как способность менять на малые отклонения. Оно выражается как изменение тока через ноль-индикатор при единичном отклонении моста регулируемого в положении равновесия. При максимальной чувствительности моста если Z2=Z4, то и Z1=Z3. на практике это условие выполняется редко, т.к. Z3 должно быть достаточно большим чтобы обеспечить требуемую точность. Наибольшая чувствительность достигается, когда ноль-индикатор включен между контактами двух плеч с максимальным и минимальным импедансом. Чувствительность моста также пропорциональна напряжению источника питания. В качестве ноль-индикатора в мосте постоянного тока можно использовать магнитно-электрический прибор. Простейшим индикатором для моста переменного тока является головной телефон; на частотах, на которых чувствительность уха низка применяют радиоприемник или измерительные усилители. Для достижения высокой чувствительности и избирательности требуется генератор непрерывного сигнала и гетеродинный индикатор. Для уравновешивания моста используют также подключенный к осциллографу усилитель. Напряжение источника питания не должно превышать максимально допустимого напряжения и не выделять избыточного тепла. Чем ниже напряжение, тем ниже чувствительность моста и система более восприимчива к высокочастотным помехам. Для мостов переменного тока на низкой частоте можно использовать сетевое напряжение 50 Гц. Выпускаемые промышленные мосты обычно содержат источники питания с различными частотами, т.к. чувствительность мостов с реактивными сопротивлениями пропорционально частоте и эта зависимость может быть крутой на одном конце сопротивления и пологой на другом. Максимальная частота источника питания должна быть ниже собственной резонансной частоты измеряемых элементов, чтобы уменьшить ошибки измерений. Если точка равновесия моста чувствительна к частоте, то источник питания должен иметь стабильную частоту и не генерировать гармоники, т.к. уравновешенные на одной частоте не остаются в равновесии на гармонике.

Резистивные мосты.

Мост Уитстона.

Наибольшее распространение получил резистивный мост называемый мостом Уитстона.

Rx – неизвестное сопротивление

R1, R2, R3 – регулируются до тех пор пока ток через ноль-индикатор не станет равным нулю. В таком положении Rх определяется: Rх=R3R2/R1 (4)

R1 и R2 – неизвестные фиксированные сопротивления в диапазоне от 1Ом до 1кОм, при этом R2/R1 составляет от 10-3 до 103.

R3 регулируется шагом 1 или 1.1Ом вплоть до 10кОм, чтобы уравновесить мост. При измерении, R1 и R2 выбираются такими, чтобы чувствительность моста была максимальной. R4 сначала включают в цепь для защиты ноль-индикатора, но может быть и закорочено для повышения чувствительности, когда равновесие достигнуто.

Мост Уитстона используют для измерения сопротивлений резистора с двумя зажимами от 1Ом до 100 МОм. Нижний предел измерения сопротивлений зависит от импеданса соединений проводов и контактов. Для измерения сопротивлений ниже 1ом используют второй мост Уитстона. При измерении до 100 Ом мост дает ошибку (5-100)10-6. В мосте используются резисторы из манганина, который имеет низкий температурный коэффициент сопротивления, высокую стабильность, и низкий термоЭДС. При проведении измерений с мотом Уитстона обычно берут 2 отсчета при разных полярностях батареи, а затем усредняют результат, исключая эффект термоЭДС. Пиковый ток через резисторы должен поддерживаться на низком уровне, чтобы избежать изменения сопротивления из-за их нагрева током. Чтобы использовать мост Уитстона для измерений выше 100 МОм требуется высокое напряжение, тогда токи утечки на землю могут приводить к заметным погрешностям. Их можно уменьшить и расширить рабочий диапазон моста до 1012 Ом, если использовать высокочувствительный индикатор и методы защиты (экранирование, заземление экрана и другое).

Мосты для измерения индуктивности.

Для измерения индуктивности в этих мостах используется метод сравнения с известной индуктивностью. Для питания используется переменный ток, при этом две составляющие моста должны быть регулируемые, чтобы обеспечить уравновешивание, как по модулю, так и по фазе. Предполагается, что неизвестная катушка имеет собственную индуктивность Lx, взаимную Nx и сопротивление Rx.

Мост для измерения индуктивности методом сравнения с мерой.

Наиболее прямой метод измерения индуктивности состоит в сравнении с известной с помощью моста.

R1 – регулируемое сопротивление, которое включает сопротивление катушки L1

r – резистор (необязателен)

При равновесии моста Rx и Lx определяется:

Rx=(R1*R3/R2)-r (5)

Lx=L1R3/R2 (6)

Регулируя L1 и R1, уравновешивающийся мост достигает равновесия с Rx и Lx. Поскольку индуктивности имеют относительно большие собственные сопротивления, можно включит в схему r и изменить его сопротивление в процессе уравновешивания, чтобы расширить диапазон измеряемых индуктивностей. Если использовать меры индуктивности, то уравновешивание моста можно обеспечит регулировкой R1 и R3/R2, но при регулировке они будут влиять друг на друга, в результате время уравновешивания увеличивается и зависит от добротности Q неизвестной индуктивности. Такой измеритель индуктивности используется редко из-за трудности получения стабильных и точных индуктивностей.

Мост Максвелла-Вина.

В модификации моста Максвелла предложенной Вином для измерения неизвестной индуктивности используется параллельное соединение сопротивлений и емкостей.

Поскольку ток через конденсатор опережает ток через индуктивность, необходима фазовая компенсация. Следовательно, емкостные и индуктивные компоненты следует размещать в противоположных плечах моста. Условие равновесия моста:

Rx=R1R3/R2 (7)

Lx=R1R3/C (8)

Qx=ωLx/Rx=ωR2C (9)

Индуктивность измеряется с помощью емкостей высокого качества, которые значительно точнее и легче в изготовлении, чем образцовые, и создают незначительное поле. Равновесие обычно достигается регулировкой R2 и С, т.к. этим обеспечивается независимое уравновешивание Rx и Lx. Однако можно использовать фиксированную С и регулировать R2, R1 или R3, хотя при этом время уравновешивания возрастает. Мост широко используется для измерения индуктивности катушек с добротностью Q ниже 10. Этот верхний предел Q обусловлен тем, что как следует из (3) сумма фазовых углов противоположных плеч моста должны быть равны при равновесии. Т.к. R1 и R3 активные сопротивления, то их фазовые углы равны нулю. Ток через индуктивность с большой Q будет отставать по фазе почти на 900. это означает, что резистор R2 должен иметь слишком большое сопротивление. Эта трудность преодолена в мосте Хея.

Мост Хея.

Rx=R1R3/R2(1+Q2x) (10)

Lx=R1R3C/(1+1/Q2x) (11)

Qx=ωLx/Rx=1/ωR2c (12)

(10) и (12) – условие равновесия

R2 соединен последовательно с емкостью С. При высокой добротности Lx R2 можно выбрать очень маленьким. Недостаток: равновесие зависит так, что шкалу прибора невозможно проградуировать в значениях индуктивности. Мост Хея обычно используют только для измерения катушек с добротностью Q меньше 10. если пренебречь в (11) членом Q2x, то значение индуктивности не зависет от частоты, и погрешность составит менее1%.

Мост Оуэна.

Rx=(R1C1/C2)-r (13)

Lx=R1R2C1 (14)

(13) и (14) условие равновесия моста. Если R2 и С2 регулируемые элементы схемы, то можно обеспечить независимое равновесие для Rx и Lx. Хотя это возможно для регулировки R1 и R2. r подключать необязательно, нужно для расширения диапазона возможного баланса сопротивлений. Данный мост полезен для определения дифференциальной индуктивности.

Мост Кемпбелла.

Mx=M1R3/R2 (15)

Rx=R1R3/R2 (16)

Lx=L1R3/R2 (17)

Используют для измерений взаимной индуктивности со сравнением с образцовой. (15) и (17) - условие равновесия. Положение 2: калибровка регулированием L1 и R1. Положение 1: измерение. М1 регулируют до установления с Мх.

 

Измерение индуктивности, добротности, емкости, тангенс дельта мостами переменного тока

Мостовые схемы измерения индуктивности и добротности с образцовыми элементами: а) - с катушками, б) с конденсатором. В них используется источник гармонического тока с напряжением U и угловой частотой ω. Эти мосты обеспечивают наилучшее уравновешивание. Эквивалентная схема замещения для катушек индуктивности с потерями могут быть последовательными или параллельными в зависимости от потерь отраженных активным сопротивлением. Условие равновесия моста для схемы а): R1(Rx+jωLx)=R2(Ro+jωLo) (1).

Где Lх и Rх измеряемое индуктивность и сопротивление омических потерь в катушке, Lo и R0 - образцовая индуктивности и сопротивление. Приравняв, действительные и мнимые части в выражении (1) находим: Rx=RoR2/R1, Lx=LoR2/R1 (2).

Поскольку изготовление высокодобротных образцов катушек вызывает определенные трудности, часто в качестве образцовой меры в мостах переменного тока применяют конденсатор (рис б). Для этой схемы справедливо: Rx+jωLx=R2R3(1/Ro+jωCo) (3).

Если в данном уравнении приравнять действительную и мнимую части, то получим следующее выражение: Rx=R2R3/Ro Lx=CoR2R3 (4).

Добротность катушки определяется: Q=ωLx/Rx=RoωCo (5)

Мосты для измерения емкостей.

Для измерения емкости и тангенса угла потерь конденсаторов с достаточно малыми потерями применяют мостовые схемы с последовательным соединением Сх и Rх, а для конденсаторов с большими потерями - схемы с параллельным соединением Сх и Rх. Для измерения емкости используются три вида моста: мост для измерения методом сравнения с мерой, мост Шеринга и мост Вина. Рассмотрим мост для измерения емкости методом сравнения с мерой.

Принципиальные схемы мостов для измерения емкости методом сравнения с мерой: а) - последовательное включение, б) – параллельное, где С1 образцовая емкость с внутренним сопротивлением R1

Условие равновесия моста имеет вид:

Rx=R1R3/R2 (6)

Cx=C1R2/R3 (7)

tgδ=ωC1R1 (8)

Сопротивление R1 и R2 регулируется до уравновешивания моста, и поскольку они связаны, нужно выполнить несколько попыток. Емкость С1 - обычно образцовый конденсатор высок точности, который не регулируется. Для измерения емкости с высоким тангенсом угла диэлектрических потерь предпочтительно использовать схему с параллельным включением, т.к. при последовательном включении R1 должно быть большим. Равновесие моста определяется выражениями 6,7 и 8, а тангенс угла диэлектрических потерь: tgδ=1/ωC1R1.

Метод сравнения с мерой не очень точен для измерения емкостей с малым tgδ, в этих случаях лучше использовать мост Шеринга.

Мост Шеринга.

Этот мост широко используется для измерения емкости, для точного определения tgδ. Он также используется в мостах высокого напряжения методом сравнения с образцовыми емкостями высокого напряжения и применением экранирования.

Условие равновесия:

Rx=C2R3/C1 (10)

Cx=C1R2/R3 (11)

tgδ=ωC2R2 (12)

С1 – образцовая емкость с малыми потерями tgδ, С2 и R2 регулируются до достижения равновесия. Уравновешивание схем обеспечивается поочередным регулированием образцовых сопротивлений или емкостей. Эту процедуру называют шагами, а количество шагов определяется сходимостью моста. Мост с хорошей сходимостью имеет не больше 5 шагов. Мост переменного тока используется на низких частотах 500-5000 Гц, поскольку при работе на повышенных частотах погрешности резко возрастают. Погрешность измерения моста переменного тока определяет погрешность элементов образующих мост, переходных сопротивлений контактов и чувствительность схемы. Мосты переменного тока больше, чем мосты постоянного, подвержены влиянию помех, и паразитных связей между плечами, плечами и землей и т.д. Поэтому даже при тщательном экранировании моста и принятии других мер защиты погрешности у мостов переменного тока больше, чем у моста постоянного тока.

Измерение частоты.

С помощью моста Вина можно измерить неизвестную емкость Сх, но чаще он применяется для измерения неизвестной частоты. При этом вместо Сх включается образцовая емкость.

Условие равновесия: Cx/C1=R2/R3-R1/Rx (13), C1Cx=1/ω2R1Rx (14).

Решая, уравнения 13 и14 можем, найти частоту: f=1/2П(C1CxR1Rx)1/2 (15).

Применяемых на практике мостах емкости С1 и Сх фиксированы, а R1 и Rх - известные переменные сопротивления, которые регулируются общей ручкой, так что R1=Rх. Значение R2 принимают равным 2R3, так что выражение 15 принимает вид: f=1/2ПC1R1 (16).

Следовательно, мост уравновешивается изменением одного лишь сопротивления R1, калибровка осуществляется непосредственно в значениях частоты. Поскольку мост Вина чувствителен к изменениям частоты - его трудно уравновесить, если входной сигнал содержит гармоники, поэтому такой сигнал необходимо, сначала отфильтровать.

 








Дата добавления: 2015-05-21; просмотров: 6937;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.023 сек.