Элементы нейросетевого моделирования процессов в технических объектах и системах.
Нейронные сети (НС) – раздел искусственного интеллекта, для обработки сигналов в котором используются явления, аналогичные явлениям, происходящим в нейронах живых организмов.
Их важнейшей особенностью является возможность параллельной обработки информации всеми звеньями. Громадное количество межнейронных связей позволяет значительно ускорить процесс обработки информации и сделать возможным преобразование сигналов в реальном времени. Большое число межнейронных связей обеспечивает устойчивость НС к ошибкам: в этом случае функции поврежденных связей берут на себя исправные линии и деятельность сети не претерпевает существенных возмущений.
НС способны к обучению и обобщению накопленных знаний, они обладают чертами искусственного интеллекта, в частности, в обобщении полученной информации и в показании хороших результатов на не использовавшихся в процессе обучения данных
Основу каждой нейросети составляют относительно простые, в большинстве случаев – однотипные, элементы (ячейки), имитирующие работу нейронов мозга. Под нейроном будет подразумеваться искусственный нейрон, то есть ячейка нейросети.
Он обладает группой синапсов – однонаправленных входных связей, соединенных с выходами других нейронов, а также имеет аксон – выходную связь данного нейрона. Каждый синапс характеризуется величиной синаптической связи или ее весом . Выход нейрона есть функция его состояния – «функция активации», или «передаточная функция» нейрона. Одним из важных факторов не является способ ее обучения. Выделяют два подхода: обучение с учителем и обучение без учителя.
Решение задач с использованием НС включает, как правило, три этапа (рис.).
В каждом из названных приложений НС играет роль универсального аппроксиматора функции от нескольких переменных, реализуя нелинейную функцию . Именно к аппроксимационному представлению могут быть сведены многие задачи моделирования, идентификации и обработки сигналов.
Рис. Этапы решения задачи с применением нейронных сетей
Дата добавления: 2015-04-03; просмотров: 1131;