Преобразователи координат и фаз. Математическая основа преобразования координат поясняется на рис.61

Математическая основа преобразования координат поясняется на рис.61

 

Рис.61 Преобразование координат

 

В неподвижной системе координат ( , ) вектор тока (напряжения, потокосцепления) может быть представлен в алгебраической и показательной форме:

Аналогично, в системе вращающихся координат ( ), тот же вектор может быть представлен в виде:

Отсюда легко получить уравнение перехода от неподвижной системы координат к вращающейся, и наоборот:

, ,

При построении реальных систем электропривода переменного тока, как асинхронных, так и синхронных, практически всегда в систему управления включаются преобразователи координат. Это обусловлено тем, что реальные токи в обмотках статора - это токи в неподвижной системе координат.

Поэтому, как правило, современные электроприводы переменные тока содержат преобразователи обоих типов. Кроме того, они содержат преобразователи фаз 2/3 и 3/2. Первые преобразовывают токи и в фазные токи , , , в соответствии с выражениями:

, ,

А вторые преобразовывают токи , , в проекции и , в соответствии с выражениями:

,

В итоге, функциональная схема электропривода приобретает вид, представленный на рис.62.

Рис.62 Функциональная схема асинхронного электропривода

 

В блоке регуляторов на основе задающего сигнала и сигналов из каналов обратной связи, переменными состояниями вырабатываются сигналы управления во вращающейся системе координат, а также скорость вращения системы координат ( ). Затем эти сигналы переводятся в систему неподвижных координат, которые управляют инвертором. Используя вращающуюся систему координат при анализе и синтезе асинхронного электропривода, удается часть схемы, обведённую жирной линией на рис.62, описать одной системой уравнений (55) . это описание достаточно точно, когда инвертор управляется синусоидальным ШИМ. В этом случае моделирование не встречает больших затруднений.

 








Дата добавления: 2015-05-08; просмотров: 1074;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.004 сек.