Зображення як функція
Будемо розглядати зображення як функцію двох змінних, певну в крапках кінцевого растра (мається на увазі крапкова модель растра, див. визначення в I(x, y) - значення атрибута пикселя (наприклад номер у палітрі, інтенсивність), що залежить від колірної моделі подання зображення (див. мал. 14.1 і мал. 14.2). Безліч таких функцій на крапках фіксованого кінцевого растра утворять конечномерное евклидово простір RX,Y розмірності m × n (|X|=m,|Y|= n) зі скалярним добутком
Рис. 14.2. Зображення як функція двох змінних
Будемо ототожнювати з таким простором L2(X × Y ). У такому просторі існує базис (див. [3]), тобто така система елементів з RX,Y і такий набір не рівних одночасно нулю коефіцієнтів , що для будь-якої функції I із цього простору виконане
Якщо додатково припустити ортонормальность базису, тобто
те виконується наступне співвідношення:
Ck = (I, ek).
Дата добавления: 2015-04-03; просмотров: 1139;