Разложение периодических несинусоидальных кривых в ряд Фурье
Из математики известно, что всякая периодическая функция , где Т – период, удовлетворяющая условиям Дирихле, может быть разложена в тригонометрический ряд. Можно отметить, что функции, рассматриваемые в электротехнике, этим условиям удовлетворяют, в связи с чем проверку на их выполнение проводить не нужно.
При разложении в ряд Фурье функция представляется следующим образом:
. | (1) |
Здесь - постоянная составляющая или нулевая гармоника; - первая (основная) гармоника, изменяющаяся с угловой частотой , где Т – период несинусоидальной периодической функции.
В выражении (1) , где коэффициенты и определяются по формулам
;
.
Дата добавления: 2015-04-19; просмотров: 811;