Ядерный магнитный резонанс (ЯМР)
Избирательное поглощение электромагнитных волн определенной частоты веществом в постоянном магнитном поле, обусловленное переориентацией магнитных моментов ядер, называют ядерным магнитным резонансом (ЯМР).
Магнитный момент ядра, помещенного в постоянное магнитное поле, может принимать только дискретную ориентацию. Это значит, что энергетический уровень ядра, также как энергетический уровень атома, в постоянном магнитном поле расщепляется на подуровни.
Если в этих условиях на ядро воздействовать переменным электромагнитным полем, то между подуровнями станут возможными переходы. Чтобы осуществить эти переходы, а также поглощение энергии электромагнитного поля ядром, необходимо, чтобы частота электромагнитного поля, совпадала с частотой перехода между подуровнями, т.е.
.
Эти условия выполняются только для свободных ядер. Экспериментальные значения резонансных частот не совпадают с частотами, определяемые этой формулой. Это обусловлено химическим сдвигом, который возникает из-за того, что в атомах и молекулах под действием постоянного магнитного поля возникают электронные токи, создавая локальное магнитное поле. Поэтому постоянное магнитное поле следует характеризовать эффективным значением напряженности
,
где
постоянная экранирования, зависящая от электронного окружения ядер. Это означает, что для данного типа ядра резонанс наблюдается при разных частотах, что и определяет химический сдвиг. Он зависит от электронного строения молекул, от химической связи, концентрации данного вещества, температуры, типа растворителя и т.д.
По химическому сдвигу, числу линий в спектре, по положению линий можно установить структуру молекулы.
В настоящее время разработан метод ЯМР - интроскопии, в котором без разрушения послойно исследовать кости, сосуды, нормальные ткани и ткани со злокачественной патологией, что является эффективным методом диагностики заболеваний, которые связаны с изменением состояния органа и ткани.
Диффузия в жидкостях. Закон Фика.
Важным элементом функционирования мембран является их способность пропускать или не пропускать атомы (молекулы) и ионы, т.е. проницаемость мембран.
Диффузия – самопроизвольный процесс проникновения вещества из области большей концентрации в область меньшей концентрации в результате теплового хаотичного движения.
Количественными характеристиками диффузии являются поток вещества и плотность потока вещества.
Поток вещества
- масса вещества, переносимого через площадь
, перпендикулярную движению частиц, в единицу времени.
Плотность потока вещества
- масса вещества, переносимого через единицу площади
, перпендикулярной движению частиц, за единицу времени.
Диффузия в жидкости описывается уравнением Фика:

- плотность потока вещества
, если
,
- коэффициент диффузии,
- градиент концентрации характеризует изменение концентрации на единицу длины
.
Пассивный транспорт веществ.
Пассивный транспорт всегда осуществляется за счет энергии, сконцентрированной в каком-либо градиенте. Энергия метаболических процессов клеток (энергия гидролиза АТФ) на этот процесс непосредственно не переносится.
Имеются следующие виды пассивного транспорта веществ в клетках и тканях: диффузия, осмос, электроосмос, аномальный осмос, фильтрация.
Основным механизмом пассивного транспорта является диффузия - самопроизвольный процесс проникновения вещества из области большей концентрации в область меньшей концентрации в результате теплового хаотического движения.
Перенос незаряженных частиц (атомов и молекул) через мембрану
Механизмом переноса молекул и атомов через мембрану является диффузия, а сам транспорт описывается уравнением Фика:

Концентрационный градиент клеточной мембраны определить трудно, поэтому лучше использовать более простое уравнение, предложенное Коллендором и Берлундом

где
- проницаемость мембраны,
- концентрация вещества в клетке,
- концентрация вещества в окружающей среде
Перенос заряженных частиц (ионов) через мембрану.
Проникновение заряженных частиц через мембрану зависит не только от концентрационного градиента, но и от градиента электрического потенциала. Плотность потока вещества при этом следует рассчитывать как сумму двух слагаемых:

Здесь
- плотность потока вещества, обусловленная градиентом концентраций,
- плотность потока вещества, обусловленная градиентом электрического потенциала мембраны.

где
- подвижность ионов,
- концентрация ионов,
- заряд ионов,
- постоянная Фарадея,
- градиент потенциала.
Общая плотность потока вещества равна

Это уравнение называется уравнением Нернста-Планка.
Совокупность концентрационного и электрического градиентов называется градиентом электрохимического потенциала.
Виды диффузии.
1. Простая диффузия – диффузия, при которой молекулы диффундирующего вещества движутся без образования комплекса с другими молекулами.
2. Диффузия через каналы.Каналы образованы белковыми молекулами и обладают избирательой проницаемостью. Наличие каналов увеличивает проницаемость мембран.
3. Облегченная диффузия.
Вещество
самостоятельно слабо диффундирует через мембрану (рис. 7.6.). Но скорость диффузии значительно возрастает, когда молекула
этого вещества образует комплекс с некоторым вспомогательным веществом Х, растворенным в липиде. Переносчики Х могут быть фиксированными и образовывать пору.
4.Обменная диффузия.
При обменной диффузии вспомогательное вещество
образует комплекс с молекулой проникающего вещества
, комплекс диффундирует через мембрану (рис. 7.5). На другой стороне мембраны молекула
, освободившись, уходит в клетку,
| рис. 7.5 |
а ионофор берёт из клетки другую молекулу
и переносит её в окружающую среду. В результате концентрация вещества
по обе стороны мембраны не меняется.
5. Осмос – движение молекул воды (растворителя) через полупроницаемую мембрану из области большей концентрации растворённого вещества в область меньшей концентрации растворенного вещества. Плотность потока вещества определяется как

Здесь
- коэффициент проницаемости;
и
- осмотическое давление по одну и другую сторону мембраны, соответственно.
6. Фильтрация – движение молекул воды (растворителя) через полупроницаемую мембрану из области большей концентрации растворённого вещества в область меньшей концентрации растворенного вещества при наличии гидростатического давления.
Активный транспорт.
Активный транспорт обеспечивает перенос молекул и ионов из области меньших концентраций и электрических потенциалов в область больших концентраций и электрических потенциалов.
Для осуществления такого транспорта клетка совершает работу против градиентов концентраций и потенциалов.
Если через клетку переносится незаряженная частица (атом или молекула), то эта работа равна
,
где
- количество молей вещества, перенесенного через мембрану из области меньших концентраций
в область больших концентраций
;
- универсальная газовая постоянная,
- абсолютная температура.
Если переносится ион через электрически заряженную мембрану, то эта работа равна
, где
- валентность ионов,
- число Фарадея (заряд 1 моля ионов),
разность потенциалов между поверхностями мембраны. Знак
зависит от знака заряда ионов.
Чтобы совершить эту работу, клетке нужна энергия. Эту энергию клетка получает при гидролизе фермента
. Особое внимание следует обратить на активный транспорт ионов
и
, калий – натриевый насос, т.к. именно эти ионы играют большую роль при генерации биоэлектрических потенциалов и проведении возбуждения. Он начинается на внутренней поверхности мембраны и происходит в три стадии.
1. Киназная. Переносчик на внутренней стороне мембраны захватывает из цитоплазмы ион
. Комплекс
переносится на наружную поверхность мембраны за счет энергии гидролиза
. Здесь
неорганический фосфат,
адезиндифосфатоза. Выделившейся энергии хватает для завершения всех трех фаз.
2. Ионообменная. На наружной поверхности мембраны ионы
обмениваются на ионы
. Комплекс
снова движется к внутренней стороне мембраны, где вторая фаза заканчивается.
3. Фосфатозная. Эта фаза заканчивает цикл на внутренней поверхности мембраны дефосфолированием переносчика и освобождением ионов 

Контрольные вопросы
• Структура мембраны. Модели мембран. •Основные биофизические свойства мембран. Методы исследования мембран. •Диффузия в жидкостях. Закон Фика. •Перенос незаряженных частиц (атомов и молекул) через мембрану. •Уравнение Коллендера-Берлунда. • Уравнение Нернста-Планка. •Виды пассивного транспорта (простая диффузия, диффузия через каналы, облегченная, обменная, осмос, фильтрация). •Активный транспорт веществ. Натрий-калиевый насос.
Дата добавления: 2015-04-19; просмотров: 1392;
