Выделение сигнала из шума
Разобучение действительно улучшает запоминание случайных образов. Однако, например, для коррелированных образов доводы, приведенные в предыдущем разделе теряют свое значение. Действительно, если эти образы, например, являются слегка зашумленными вариантами одного образа-прототипа . Нетрудно показать, что в этом случае единственной зеркальной парой аттракторов в сети с Хеббовскими связями окажется пара . Это означает, что вся память, которой обладает сеть, оказывается ложной. Отсюда следует, в частности, что состояниям ложной памяти далеко не всегда соответствуют неглубокие энергетические минимумы.
Этот пример показывает, что ложная память иногда не бесполезна, а преобразуя заучиваемые векторы, дает нам некоторую важную информацию о них. В данном случае сеть как бы очищает ее от случайного шума. Подобное явление характерно и для обработки информации человеком. В известном психологическом опыте людям предлагается запомнить изображения, каждое из которых представляет собой обязательно искаженный равносторонний треугольник. При контрольной проверке на значительно более широком наборе образов, содержащийся в них идеальный равносторонний треугольник опознается испытуемыми как ранее виденный. Такое явление называется выработкой прототипа. Именно эта аналогия использовалась нами при введении обозначения .
Дата добавления: 2015-04-10; просмотров: 1168;