Метод вынужденного выбора

 

Метод вынужденного выбора является самым сложным и трудоемким из описываемых в пособии методов. В связи с этим он и используется реже. Однако его положительной стороной является то, что он позволяет получать более точные и стабильные оценки сенсорной чувствительности, чем другие методы.

Основное отличие от двух предыдущих методов – «Да – нет» и оценивания, где в каждой пробе имелся только один интервал наблюдения (или два, если речь идет об измерении дифференциальной чувствительности), заключается в наличии нескольких таких интервалов. При этом только в одном из интервалов наблюдения предъявляется стимул, а в остальных стимул отсутствует (т.е. остальные пробы пустые). В каком именно интервале наблюдения будет присутствовать стимул, испытуемый не знает. Соответственно задача испытуемого – определить, в каком из интервалов наблюдения – первом, втором, или каком-либо другом был предъявлен стимул.

В другом варианте метода могут использоваться не последовательные интервалы наблюдения, а пространственно разные зоны наблюдения, в одной из которых будет предъявлен стимул. Например, зрительный стимул может предъявляться в левой или правой части экрана или зрительного поля, либо в одной из трех (четырех, пяти, и т.д.) областей экрана, слуховой стимул может быть предъявлен в левое или правое ухо, и т.д.

Главное заключается в том, что и в первом, и во втором вариантах метода вынужденного выбора в каждой пробе стимул обязательно будет предъявлен. Однако где (в какой зоне наблюдения) или когда (в каком интервале наблюдения) это произойдет, испытуемый не знает. Определить этот интервал или зону – задача испытуемого.

Таким образом, основные правила, которые применяются в методе вынужденного выбора, следующие:

1) в эксперименте используется одно значение стимула;

2) в каждой отдельной пробе имеется несколько интервалов (зон) наблюдения (не менее 2-х), в одном из которых предъявляется стимул, а остальные интервалы (зоны) пустые – т.е. без стимула. При этом интервал (зона), в котором появится стимул, выбирается случайным образом и испытуемый не должен знать, в каком из интервалов (зоне) наблюдения ему будет предъявлен стимул.

3) испытуемый должен определить, в каком из интервалов (зоне), по его мнению, был предъявлен стимул, и дать один из ответов:

 

Ответ R1 – стимул был в первом интервале (зоне) наблюдения;

Ответ R2 – стимул был во втором интервале (зоне) наблюдения;

Ответ Ri – стимул был в i-ом интервале (зоне) наблюдения.

 

Т.е. он должен принять решение, сравнив свои субъективные впечатления, относящиеся к разным интервалам (зонам) наблюдения. При этом испытуемый должен обязательно выбрать один из вариантов ответа – отсюда и название «вынужденный выбор».

 

Процедура проведения и обработка результатов. Наиболее часто используется самый простой вариант метода вынужденного выбора – двухальтернативный, в котором используется минимальное число интервалов (зон) наблюдения – два. Поэтому дальнейшее описание метода будет относиться именно к такому варианту.

По процедуре проведения метод вынужденного выбора во многом сходен с двумя предыдущими, отличаясь только тем, что в структуре отдельной пробы имеется не один (см. рис.12), а два интервала наблюдения, и в своем ответе испытуемый указывает номер интервала (первый или второй), в котором, по его мнению, присутствовал стимул.

Главное отличие от предыдущих методов состоит в том, как определяются вероятности правильного обнаружения и ложной тревоги - Pобн и Pлт. Обозначим случай, когда стимул предъявляется в первом интервале [sn], а случай, когда стимул предъявляется во втором интервале – [ns]. Испытуемый должен дать один из двух ответов: R1 – стимул содержится в первом интервале, и R2 – стимул содержится во втором интервале. Соответственно может быть четыре варианта сочетания ответов и стимульной ситуации:

 

1) R1/[sn] – с вероятностью P(R1/[sn]);

 

2) R1/[ns] – с вероятностью P(R1/[ns]);

 

3) R2/[sn] – с вероятностью P(R2/[sn]);

 

4) R2/[ns] – с вероятностью P(R2/[ns]).

 

Ответы первого и третьего типов будут правильными, а ответы второго и четвертого типов – ошибочными. Для вероятностей этих ответов справедливы равенства:

 

P(R1/[sn]) + P(R2/[sn]) = 1, (28a)

 

P(R1/[ns]) + P(R2/[ns]) = 1. (28b)

 

Эти равенства подобны тем, которым подчиняются величины Pобн, Pпроп, Pлт и Pотр, и рассматривались ранее (см. равенства (17) в разделе 3.2.3). Поэтому можно взять в качестве аналогов Pобн и Pлт соответствующие величины из равенств (28) - P(R1/[sn]) и P(R1/[ns]), считая ответы типа R1/[sn] случаями правильного обнаружения, а ответы типа R1/[ns] – ложными тревогами. Такой подход дает возможность использовать данные, получаемые методом вынужденного выбора для построения РХ и вычисления тех же мер чувствительности, что и в предыдущих двух методах – показателя .

Для того, чтобы иметь возможность вычисления этого показателя чувствительности, необходимо данные, полученные при помощи метода вынужденного выбора, привести к общей модели, изложенной в разделе 3.2. Дело в том, что сенсорный эффект при действии стимула (или шума) может появиться как в первом, так и во втором интервале наблюдения. Соответственно будем иметь два стимульных распределения f(s1) и f(s2), и два «шумовых» распределения - f(n1) и f(n2), где индекс 1 или 2 означает номер интервала наблюдения – первый или второй. То есть в каждом интервале наблюдения испытуемый имеет дело с распределениями f(s) и f(n) (см. разд.3.2.1, 3.2.2 и рис.6). Принимая решение, он должен не только учитывать одно абсолютное значение сенсорного эффекта, но сравнивать величину сенсорного эффекта s1 в первом интервале наблюдения с величиной сенсорного эффекта s2 во втором интервале наблюдения. Для ситуации [sn] появление s1 означает, что сенсорный эффект был вызван стимулом в первом интервале наблюдения, а появление s2 – что сенсорный эффект был вызван шумом во втором интервале наблюдения (для ситуации [ns] – наоборот).

Это означает, что испытуемый работает при принятии решения с относительными величинами ∆s = s1s2. Поскольку s1 и s2 являются случайными величинами, то и их разность, величина ∆s, также будет случайной. Поскольку s1 и s2 еще и независимые величины, то распределения апостериорных плотностей вероятностей того, что стимул был в первом интервале наблюдения (f(∆s /n)), и того, что он был во втором интервале (f(∆s /s)), будут иметь соответственно следующие параметры:

 

Mn = Ms1 - Mn1, (29a)

 

Ms = Ms2 - Mn2, (29b)

 

. (29c)

 

Таким образом, мы получаем два новых распределения f(∆s /n) и f(∆s /s), которые располагаются симметрично относительно ∆s= 0, и последующая деятельность испытуемого следует тем же правилам, что описаны в разделе 3.2.

Отметим одну важную особенность метода вынужденного выбора, связанную с симметричностью расположения распределений на оси ∆s. Испытуемый будет стремиться сохранить симметричное относительно ответов R1 и R2 значение критерия, подобного s0 в методе «Да-Нет», что обеспечит высокую стабильность порога принятия решения. Значение критерия ∆s0, соответствующее такому порогу, выбирается испытуемым близким к точке ∆s = 0. Попытки изменить этот порог с помощью инструкции (например, с помощью изменения стоимостей ответов) в сторону предпочтения одного из ответов, вынуждают испытуемого при попытке следовать такой инструкции давать ответы, которые противоречат результату наблюдения. Как правило, в такой ситуации испытуемый предпочитает опираться на собственные впечатления, игнорируя требования инструкции. Это приводит к высокой стабильности получаемых в итоге результатов и показателей.

Показатель чувствительности в методе вынужденного выбора будет иметь другую величину, чем d’ в методе «Да-Нет» и методе оценки. Пронормировав распределения f(∆s /n) и f(∆s /s) по σn = σs = 1, с учетом (29) в итоге получаем

 

, (30)

 

т.е. чувствительность сенсорной системы по показателю, получаемому в методе вынужденного выбора, оказывается большей, чем в первых двух методах. Такое повышение связано, очевидно, с возможностью для испытуемого сравнивать ощущения из первого и второго интервалов наблюдения, а не опираться при принятии решения только на одну оценку абсолютной величины сенсорного эффекта, как это происходит в методах «Да-Нет» и оценки.

Поскольку критерий, используемый испытуемым в рассматриваемом методе, обладает высокой стабильностью, то построение РХ обычным способом, описанном в 3.3.1, невозможно, так как экспериментальные данные позволяют определить только одну точку РХ, лежащую на пересечении РХ с отрицательной диагональю.

Помимо показателя чувствительности , в методе вынужденного выбора используется еще показатель P(C), представляющий собой отношение числа правильных ответов к общему числу проб:

 

P(C) = Pобн ·Ps + Pотр ·Pn , (31a)

 

или, учитывая зависимость Pотр от Pлт,

 

P(C) = Pобн ·Ps + (1 – Pлт) ·Pn . (31b)

 

Так как Ps и Pn являются на протяжении эксперимента постоянными, то при наличии стабильного критерия и неизменной чувствительности значение P(C) также будет постоянной величиной, изменяясь только тогда, когда меняется чувствительность сенсорной системы.

 


 

 








Дата добавления: 2015-03-09; просмотров: 695;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.016 сек.