А) модель Шведова — Бингама
(2.13)
используемая для псевдопластичных жидкостей;
б) модель Освальда — Вейля, или степенная модель,
(2.14)
используемая для обоих типов жидкостей, где τ0 — предельное (или динамическое) напряжение сдвига; η — пластическая (или структурная) вязкость; k — показатель консистенции; п — показатель неньютоновского поведения: при п < 1 жидкость псевдопластичная, при п>1 — дилатантная.
Между параметрами моделей (2.13) и (2.14) легко устанавливается следующая связь:
где — скорость деформации сдвига, выше которой зависимость от практически линейная (см. рис. 10).
Так как в системе единиц СИ размерность величин [ ] = Па, [η] = Па·с, и [ ] = с-1, то размерность параметра [k] = Па·с.
Среда, для которой справедливо уравнение (2.13), называется вязкопластичной бингамовской жидкостью. Она характеризуется тем, что обладает пространственной жесткой структурой и благодаря этому сопротивляется внешнему воздействию до тех пор, пока вызванное им напряжение сдвига не превзойдет предельного значения, соответствующего этой структуре. После этого структура полностью разрушается и жидкость начинает вести себя как обычная ньютоновская вязкая жидкость при кажущемся напряжении, равном избытку действительного напряжения τ над предельным τ0. При уменьшении этого кажущегося напряжения до нуля пространственная жесткая структура восстанавливается.
Необходимо подчеркнуть, что реологические параметры η, τ0 и k, п для бурового и тампонажного растворов зависят от температуры, давления, состава и диапазона изменения скорости деформации сдвига , для которой справедливы модели (2.13) и (2.14).
4. Модель неньютоновских несжимаемых вязкопластичных жидкостей при ламинарном (структурном) режиме течения. Чтобы установить характер зависимости между касательными напряжениями и скоростями деформации сдвига и определить реологические параметры жидкости в заданных условиях, используют наиболее простые формы движения: установившееся ламинарное (слоистое) течение жидкости вдоль оси цилиндрической трубы или тангенциальное течение между двумя соосными цилиндрами, т. е. течения, при которых линии тока — прямые линии или концентрические окружности. Подобные течения реализуются в специальных приборах, называемых капиллярными и ротационными вискозиметрами соответственно.
При течении жидкости в трубке радиуса R задают объемный расход Q и измеряют разность давлений Δр в двух точках потока, расположенных вдали от концов трубки на расстоянии L друг от друга. В координатах средней скорости деформации сдвига и касательного напряжения у поверхности трубки строится график.
Этот график в общем случае необходимо перестроить в координатах локальной скорости деформации сдвига и напряжения τ, используя для этого уравнение :
Однако легко показать, что для вязких и вязкопластичных жидкостей, описываемых уравнениями (2.13) или (2.14), перестраивать график ~ τ в ~ τ нет необходимости, достаточно только реологические параметры τ0 и
- для модели Шведова — Бингама и
— в степенной модели, где и — параметры, определенные зависимостью от τ.
При течении жидкости между двумя вертикальными соосными цилиндрами длиной L, из которых наружный вращается с угловой скоростью ω, реологические параметры для бингамовской жидкости (2.13) могут быть определены из соотношения
а для жидкости, соответствующей степенной модели (2.14), из формулы
где М – вращающий момент, приложенный к наружному цилиндру; α = R0/R; R0 , R - радиусы внутреннего и внешнего цилиндров соответственно.
Для производственного течения несжимаемых вязкопластичных жидкостей используются следующие уравнения состояния, обобщающие уравнения (2.12) и модели (2.13), (2.14):
при
при (2.15)
и (2.16)
где H1, Т — интенсивность скоростей деформации сдвига при и интенсивность касательных напряжений.
При определенных нестационарных режимах течения буровые и тампонажные растворы могут проявлять дополнительные свойства неньютоновского поведения:
тиксотропность— зависимость жесткости структуры от продолжительности деформирования и предыстории движения;
запаздывание во времениустановления деформации при действии постоянного напряжения или, наоборот, запаздывание во времени установления напряжений при постоянной деформации (релаксация напряжений) и т. д.
Количественное изучение этих и других важных свойств до настоящего времени остается в значительной степени неразработанным разделом механики жидкостей вообще, а для буровых и тампонажных растворов не выходит за пределы отдельных опытных иллюстраций.
Тот факт, что вязкие или вязкопластичные свойства, а следовательно уравнения состояния (2.15), (2.16), будут определяющими лишь при ламинарном(или структурном) режиме течения, т. е. тогда траектории частиц жидкости имеют вполне определенное, упорядоченное (регулярное) направление, - наиболее существенная особенность движения любой жидкости.
5. Модель неньютоновских вязкопластичных жидкостей при турбулентном режиме течения - неупорядоченном (нерегулярном), хаотическом движении.Опыты показывают, что по мере увеличения скорости течения всякое упорядоченное движение частиц жидкости постепенно нарушается и переходит в новую форму — турбулентное движение,при котором движение частиц становится неупорядоченным (нерегулярным), хаотическим.
Процессы возникновения и развития такого движения носят случайный характер и не поддаются строгому теоретическому анализу, требуя для своего изучения своеобразных статистических методов.
До настоящего времени нет ясного представления, как ламинарное движение вязкой жидкости становится турбулентным, несмотря на то, что первые научные наблюдения турбулентных движений были выполнены сто двадцать восемь лет тому назад!!! Еще сложнее проблема разрушения структурного режима течения буровых и тампонажных растворов и переход его в развитое турбулентное движение. Английский физик О. Рейнольдс, изучая движение воды цилиндрической трубе, в 1883 г. впервые обнаружил, что переход ламинарного движения в турбулентное наступает при достижении критического значения некоторого безразмерного параметра
(2.17)
где - средняя скорость потока; d — диаметр трубы; — соответственно плотность и вязкость жидкости.
По опытным данным О. Рейнольдса, нижняя граница критического числа Reкр составила 2000, а верхняя — 13000. В последующем более тщательными опытами было установлено, что для ньютоновских жидкостей наиболее вероятная нижняя граница равна 2320, а верхнюю можно довести до 50000. Оказалось, что запаздывание ламинарного течения связано с удалением возмущений на входе в трубу. Чем плавнее вход в трубу, тем позже наступает турбулентный режим.
Опытами было установлено также, что на величину верхней границы Reкр сильное влияние оказывают отклонение трубы от цилиндрической формы, заметная шероховатость поверхности трубы, наличие в жидкости твердых тел, коллоидных или дисперсных образований, изменение граничных условий, действие внешних возмущений и другие факторы.
Для вязкопластичных сред переход от структурного режима
течения к турбулентному принято определять с помощью обобщенного параметра Рейнольдса:
Дата добавления: 2015-03-07; просмотров: 4927;