Уравнением моментов
в) дифференциал кинетической энергии системы равен сумме элементарных работ всех действующих на систему внешних и внутренних сил, т. е.
dТ = dA (2.8)
называется уравнением механической энергии или теоремой живых сил.
Для любого мысленно выделяемого индивидуального объема V сплошной среды, ограниченного поверхностью S, уравнения (2.6) — (2.8) остаются в силе, если динамические величины определить следующим образом:
EMBED Equation.3 , ,
соответственно количество движения, момент количества движения и кинетическая энергия сплошной среды в объеме V;
соответственно сумма внешних объемных и поверхностных (непрерывно распределенных и сосредоточенных) сил к их моментов относительно некоторого неподвижного центра О, действующих на среду в объеме V;
сумма элементарных работ внешних и внутренних объемных и поверхностных сил.
В этом случае уравнения (2.6) и (2.7) являются основными постулируемыми динамическими соотношениями механики сплошной среды1, подобно второму закону Ньютона в механике материальной точки. Они служат исходными для описания любых движений любой сплошной среды, в том числе для разрывных движений и ударных процессов. 1 Эти уравнения для индивидуального объема сплошной среды не вытекают из подобных уравнений движения системы материальных точек, а являются самостоятельными.
Уравнение (4.8) одно из наиболее важных следствий уравнений (4.6) и (4.7) при непрерывных движениях в пространстве и времени.
При непрерывных движениях интегральная теорема движения (4.6) эквивалентна следующим трем дифференциальным уравнениям:
в цилиндрической системе координат при осевой симметрии
(2.9)
Дата добавления: 2015-03-07; просмотров: 747;