Некоторые физические свойства и параметры мембран
С появлением электронного микроскопа (см. § 23.2) впервые открылась возможность познакомиться со строением мембран. Тогда обнаружилось, что плазматическая мембрана животных и растительных клеток выглядит как трехслойная структура. На рис. 11.7 изображена электронная микрофотография плазматической мембраны эритроцита. Видно, что мембрана состоит из светлого слоя, соответствующего фосфолипидам бислоя, и двух темных слоев — они представляют собой полярные головки и белки. Толщина мембран в зависимости от вида составляет величину от 4 до 13 нм.
Измерение подвижности молекул мембран и диффузии частиц через мембрану свидетельствует о том, что билипидный слой ведет себя подобно жидкости. В то же время мембрана является упорядоченной структурой. Эти два фактора заставляют думать, что липиды в мембране при ее естественном функционировании находятся в жидкокристаллическом состоянии (см. § 8.2).
Вязкость липидного бислоя на два порядка больше вязкости воды и соот-
ветствует приблизительно вязкости растительного масла. Однако при понижении температуры происходит фазовый переход, в результате которого липиды бислоя превращаются в гель (твердо-кристаллическое состояние). На рис. 8 схематически представлен процесс «плавления» мембранных фосфолипидов при увеличении температуры (слева направо). Очевидно, что при этом меняется толщина двойного слоя — в состоянии геля (рис. 11.8, а) она больше, чем в жидкокристаллическом (рис. 11.8, б). При фазовых переходах в бислое могут образовываться каналы, по которым через мембрану способны проходить различные ионы и низкомолекулярные соединения, размер которых не превышает 1—3 нм.
В жидкокристаллическом состоянии отдельная жирнокислотная цепь может принимать много различных конфигураций из-за вращения вокруг С—С связей. При том возможно образование в бислое полостей — «кинков» (от англ. kink — петля). В этих полостях могут находиться различные молекулы, захваченные из дространства вне мембраны. При тепловом движении хвостов липидов происходит движение такого «кинка», а вместе с ним и молекул поперек мембраны или вдоль нее (рис. 11.9).
Проницаемость мембран для различных веществ зависит от поверхностного заряда, который создается заряженными головками липидов, придающими мембране преимущественно отрицательный заряд. Это приводит к тому, что на границе мембрана — вода создается межфазный скачок потенциала (поверхностный потенциал) того же знака, что и заряд на мембране. Величина этого потенциала играет большую роль в процессах связывания ионов мембраной. Помимо поверхностного потенциала, для нормального функционирования ферментных и рецепторных мембранных комплексов огромное значение имеет трансмембранный потенциал, природа которого будет рассмотрена ниже. Величина этого потенциала составляет 60—90 мВ (со знаком минус со стороны цитоплазмы). Из-за очень малой толщины мембран напряженность электрического поля в них достигает величины около (6—9) • 106 В/м.
Мембрана по своей структуре напоминает плоский конденсатор, обкладки которого образованы поверхностными белками, а роль диэлектрика выполняет липидный бислой. Емкость такого конденсатора составляет значительную величину (табл. 18). Используя формулу плоского конденсатора, можно оценить диэлектрическую проницаемость е гидрофобной и гидрофильной областей мембран, зная пределы изменения толщины мембраны. Такие оценки дают для фосфолипидной области мембраны значение ε = 2,0—2,2, а для гидрофильной части ε = 10—20.
В табл. 18 приведены некоторые физические параметры биологических мембран и в сравнении с ними — те же параметры для искусственно приготовленных липидных бислоев.
Таблица 18. Физические свойства биологических мембран и липидных бислоев
Физические параметры | Биологические мембраны | Липидные бислои |
Толщина,нм | 4-13 | 4,6-9,0 |
Электрическое сопротивление,Ом*см2 | 102-106 | 103-109 |
Электроемкость, мкФ*см-2 | 0,5-1,3 | 0,3-0,33 |
Потенциал покоя, мВ | 20-200 | 0-140 |
Показатель преломления | 1,55 | 1,37 |
Коэффициент проницаемости для воды, 10-4см*с-1 | 25-33 | 5-10 |
Напряжение пробоя, мВ | 150-200 | |
Плотность липидного бислоя, кг/м3 | 760-900 | |
Эффективный модуль упругости, Па | 0,45 | 0,3-0,5 |
Поверхностное натяжение, мН*м-1 | 0,03-3 | 0,2-6,0 |
Мембраны обладают высокой прочностью на разрыв, устойчивостью и гибкостью. По электроизоляционным свойствам они значительно превосходят многие изоляционные материалы, применяемые в технике. Общая площадь мембран в органах и тканях достигает огромных размеров. Так, суммарная площадь клеточных мембран печени крысы, весящей всего 6 г, составляет несколько сотен квадратных метров. Клетки, как правило, имеют микроскопические размеры, поэтому отношение их поверхности к объему очень велико. Благодаря этому клетки располагают достаточной площадью для обеспечения многочисленных процессов, протекающих на мембранах. Одним из наиболее важных из них является процесс переноса веществ из клетки и в клетку.
Дата добавления: 2015-03-03; просмотров: 1380;