Перенос молекул (атомов) через мембраны.Уравнение Фика
Важным элементом функционирования мембран является их способность пропускать или не пропускать молекулы (атомы) и ионы. Существенно, что вероятность такого проникновения частиц зависит как от направления их перемещения, например в клетку или из клетки, так и от разновидности молекул и ионов.
Эти вопросы рассматриваются в разделе физики, относящемся - к явлениям переноса. Таким термином называют необратимые F, процессы, в результате которых в физической системе происходит пространственное перемещение (перенос) массы, импульса, энергии, заряда или какой-либо другой физической величины.
К явлениям переноса относят диффузию (перенос массы вещества), вязкость (перенос импульса), теплопроводность (перенос энергии), электропроводность (перенос электрического заряда). Здесь и в следующих параграфах рассматриваются наиболее существенные для биологических мембран явления: перенос вещества и перенос заряда. Как синоним переноса частиц в биофизике широкое распространение получил также термин транспорт частиц.
Выведем основное уравнение диффузии (уравнение Фика), рассматривая процесс переноса в жидкостях.
Пусть через некоторую площадку S (рис. 11.10) во всех направлениях перемещаются молекулы жидкости. Учитывая теорию : молекулярного строения жидкости (см. § 7.6), можно сказать, что молекулы пересекают площадку, перескакивая из одного положения равновесия в другое.
На расстояниях, равных среднему перемещению 5 молекул (среднее расстояние между молекулами жидкости), вправо и влево от площадки построим прямоугольные параллелепипеды небольшой толщины l (l <<δ). Объем каждого параллелепипеда равен Sl. Если п — концентрация молекул, то внутри
выделенных параллелепипедов имеется Sin молекул. Предположим, что концентрация молекул изменяется в пространстве, в левом (1) выделенном параллелепипеде концентрация равна n1 а в правом (2) — п2. Следовательно, в одном параллелепипеде SZnx молекул, а в другом - Sln2 молекул.
Все молекулы вследствие хаотичного их движения можно условно представить шестью группами, каждая из которых перемещается вдоль или против направления одной из осей координат. Отсюда следует, что в направлении, перпендикулярном площадке S, вдоль оси ОХот первого параллелепипеда перескакивает 1/6 Sln1 молекул, а противоположно оси ОХ от второго параллелепипеда перескакивает 1/6 Sln2 молекул.
Время Δt «пролета» этими молекулами площадки S может быть найдено следующим образом. Предположим, что все молекулы из выделенных объемов движутся с одинаковыми средними скоростями <v>. Тогда молекулы в объеме 1 или 2, дошедшие до площадки S, пересекают ее в течение промежутка времени
Подставляя в (11.1)выражение для средней скорости ύ из (7.20), получаем
Δt=(l/δ)*τ (11.2)
где т — среднее время «оседлой жизни» молекулы, оно может рассматриваться как среднее время перескока. «Баланс» переноса молекул через площадку S за промежуток времени Δt равен
Умножая (11.3)на массу тотдельной молекулы и деля на Δt, находим массовый поток сквозь площадку S:
т. е. масса вещества, которая за 1 с переносится через площадку S. Изменение концентрации п2 - п1 молекул можно представить как произведение dn/dxна расстояние 2δ между выделенными объемами:
В уравнении (11.4) заменим Δt согласно (11.2)и (п2 - п1) согласно (11.5):
Отношение потока к площади S, через которую он переноситься, называется плотностью потока:
Произведение массы молекулы на их концентрацию есть плотность вещества (парциальная плотность):
Это есть уравнение диффузии (уравнение Фика), которое обычно записывают в виде:
Знак «-» показывает, что суммарная плотность потока вещества при диффузии направлена в сторону уменьшения плотности (в сторону, противоположную градиенту плотности), D — коэффициент диффузии, применительно к рассмотренному примеру диффузии в жидкости он равен
Как видно из (11.10),единица измерения коэффициента диффузии [м2/с].
Уравнение диффузии можно записать не только для плотности
массового потока кг/(м2*с), но и для плотности потока частиц 1/(м2*с) и плотности потока вещества моль/(м2*с), при этом в уравнении (11.9) вместо градиента плотности следует использовать соответственно градиент концентрации или градиент молярной концентрации
А. Эйнштейн показал, что коэффициент диффузии пропорционален температуре:
И поэтому вместо (11.11) имеем
В формуле (11.12) и далее ит — подвижность диффундирующих молекул (частиц), выраженная для моля. Вообще говоря, подвижностью диффундирующей частицы (молекулы, атома, иона, электрона) и называют коэффициент пропорциональности между скоростью v частицы и силой f, двигающей частицу, в том случае, когда на частицу не действуют другие силы (например, трение или соударение с другими частицами) и она перемещается равномерно:
Как видно из (11.14), единица подвижности 1 м/(с • Н). Величины um и u связаны через постоянную Авогадро:
Преобразуем уравнение (11.9) применительно к биологической мембране. Будем считать, что концентрация частиц, диффундирующих через мембрану, изменяется в мембране по линейному закону (рис. 11.11). Молярные концентрации частиц внутри и вне клетки соответственно равны ci и с0. Молярная концентрация этих же частиц в мембране изменяется от внутренней к наружной ее части соответственно от сmi до см0. Учитывая линейное изменение концентрации молекул, запишем
где I — толщина мембраны, тогда вместо (11.11) имеем
Практически доступнее определить молярные концентрации частиц не внутри мембраны (cMi и см0), а вне мембраны: в клетке (сi) и снаружи клетки (с0). Считают, что отношение граничных значенийконцентраций в мембране равно отношению концентраций в прилегающих к мембране слоях: см0/сMi = co/ci, откуда
где k — коэффициент распределения вещества (частиц) между мембраной и окружающей средой (обычно водная фаза). Из (11.18) следует
Подставляя (11.19) в (11.17), имеем
Пусть
где Р — коэффициент проницаемости. В результате получаем уравнение для плотности потока вещества при диффузии через биологическую мембрану:
Уравнение Нернста—Планка. Перенос ионов через мембраны
Как известно, на мембране существует разность потенциалов, следовательно, в мембране имеется электрическое поле. Оно оказывает влияние на диффузию заряженных частиц (ионов и электронов). Между напряженностью поля Е и градиентом потенциала dφ/dx существует известное соотношение (см. § 12.1):
Заряд иона равен Ze. На один ион действует сила f=Ze(dφ/dx); сила, действующая на 1 моль ионов, равна
где F — постоянная Фарадея, F = eNA.
Скорость направленного движения ионов пропорциональна действующей силе [см. (11.4), (11.5)]:
Чтобы найти поток вещества (ионов), выделим объем электролита (рис. 11.12) в виде прямоугольного параллелепипеда с ребром, численно равным скорости ионов. Все ионы, находящиеся в параллелепипеде, за 1 с пройдут через площадку S. Это и будет поток Ф. Число молей этих ионов
можно найти, умножая объем параллелепипеда (vS) на молярную концентрацию ионов с:
Плотность потока вещества найдем, используя формулы (11.24) и (11.25):
В общем случае перенос ионов определяется двумя факторами: неравномерностью их распределения, т. е. градиентом концентрации [см. (11.11)], и воздействием электрического поля [см. (11.26)]:
Это уравнение Нернста—Планка. Используя выражение для подвижности (11.12), преобразуем уравнение (11.27) к виду
Это другая форма записи уравнения Нернста—Планка
Используем уравнение Нернста—Планка для установления зависимости плотности диффузионного потока от концентрации ионов и от напряженности электрического поля. Предположим, система находится в стационарном состоянии, т. е. плотность потока Jпостоянна. Электрическое поле в мембране примем за однородное, следовательно, напряженность поля одинакова, а потенциал линейно изменяется с расстоянием. Это позволит считать, что , где φм — разность потенциалов на мембране.
Упростим запись слагаемого в уравнении (11.28):
где
— — —
вспомогательная величина (безразмерный потенциал). С учетом (11.29) получим уравнение Нернста—Планка в виде
Разделим переменные и проинтегрируем уравнение:
Потенцируя (11.31), получаем
откуда
Преобразуем формулу (11.32), учитывая выражения (11.19) и (11.20):
Вообще говоря, формула (11.33) справедлива как для положительных (Z > 0, у > 0), так и для отрицательных {Z < 0, ψ < 0) ионов. Однако для отрицательных ионов целесообразно видоизменить это выражение, подставив в него отрицательное значение безразмерного потенциала:
Разделим числитель и знаменатель этого выражения на е-ψ:
При использовании этой формулы необходимо помнить, что отрицательные значения Z и ψ уже учтены в самой формуле, т. е. ψ— положительная величина.
Уравнения (11.33) и (11.34) устанавливают связь плотности стационарного потока ионов с тремя величинами: 1) проницаемостью мембран для данного иона, которая характеризует взаимодействие мембранных структур с ионом; 2) электрическим полем; 3) молярной концентрацией ионов в водном растворе, окружающем мембрану {сi и с0).
Проанализируем частные случаи уравнения (11.33):
а) ψ = 0, что означает либо Z = 0 (нейтральные частицы), либо отсутствие электрического поля в мембране (φм = 0), либо и то, и другое:
Найдем пределы отдельных сомножителей.
1. Эту неопределенность можно раскрыть по правилу Лопиталя:
2.Отсюда получаем, как и следовало ожидать, уравнение (11.21):
б) одинаковая молярная концентрация ионов по разные стороны от мембраны (ci = с0 = с) при наличии электрического поля:
Это соответствует электропроводимости в электролите (см. § 12.9). Для нейтральных частиц (Z = 0 и ψ=0) J = 0;
в) если мембрана непроницаема для частиц (Р = 0), то, естественно, плотность потока равна нулю.
Дата добавления: 2015-03-03; просмотров: 1230;