Геномика — изучение всего генома

Последние достижения в области секвенирова-ния и развитие технических средств для обработки большого количества клонов в библиотеке генов позволили ученым исследовать сразу весь геном организма. Сейчас определены полные последовательности многих видов, в том числе большинства так называемых модельных генетических организмов, таких как Е. coli; круглого червя Caenorhabditis elegans; и, конечно, классического объекта генетики, плодовой мушки Drosophila melanogaster. В 1990-х годах, несмотря на ряд неурядиц и разногласий, был начат проект по исследованию человеческого генома («Геном человека»), средства на который выделил Национальный институт здоровья. В феврале 2001 года большая группа исследователей во главе с Дж. Крэй-гом Вентером из частной лаборатории «Селера Дже-номикс» сделали заявление о предварительной расшифровке человеческого генома. Результат их работы был опубликован 16 февраля 2001 года в журнале «Science».

Другая версия, которую представила группа из Международного консорциума по секвенированию человеческого генома, была напечатана 13 февраля 2001 года в журнале «Nature».

Временем зарождения геномики можно считать середину XX века, когда генетики составили карты всех хромосом модельных организмов, основываясь на частоте рекомбинаций (см. гл. 8). Однако на этих картах были показаны лишь те гены, для которых были известны мутантные аллели, и поэтому полными такие карты назвать нельзя. Полное сек-венирование ДНК позволяет выявить местонахождение всех генов организма, а также установить последовательность оснований между ними.

Геномика делится на структурную и функциональную. Структурная геномика ставит целью выяснить, где именно в хромосомной ДНК расположены те или иные гены. Компьютерные программы распознают типичные для генов начала и концы, отбирая те последовательности, которые, вероятнее всего, и являются генами. Такие последовательности называют открытой рамкой считывания (open reading frame, OFR). Те же компьютерные программы могут опознавать и типичные интроны в OFR-nocледовательностях. После того как интроны из потенциального гена вычленены, по оставшемуся коду компьютер определяет последовательность аминокислот в белке. Затем эти потенциальные белки сравнивают с теми белками, функции которых уже известны и последовательности которых уже занесены в базу данных. Благодаря такому роду программ был установлен так называемый эволюционный консерватизм: то, что для большинства генов в разных организмах имеются схожие гены. С позиций эволюционного развития такое сходство объяснимо: если белок какого-то одного биологического вида хорошо приспособлен для своих функций, то его ген передается в том же виде или с небольшими изменениями к видам, происходящим от начального. Эволюционный консерватизм позволяет опознавать гены, родственные данному гену в других организмах. Сравнив полученный ген с уже известными, зачастую можно определить и его функцию, обязательно проверив ее в последующих экспериментах.

После определения всех потенциальных генов приступают к составлению генетической карты. Генетическая карта человека — довольно запутанная и пестрая диаграмма, так как каждый ген отмечают определенным цветом в зависимости от его функции, устанавливаемой в сравнении с другими известными генами. Большинство генов человека, как и вообще гены всех эукариот, имеют большие интроны. По приблизительным оценкам, среди опубликованных последовательностей около трети или четверти приходится на интроны. Любопытно, что только около 1,5% всего генома человека (около 2,9 х 109 пар оснований) содержат последовательности (экзоны), кодирующие белки. Кроме того, похоже, что эта ДНК содержит только 35 000—45 000 генов, а это меньше предсказанного. Нам еще предстоит понять, как относительно малое количество генов кодирует такой сложный организм.

От двух третей до трех четвертей генома приходится на обширные участки между генами, что тоже представляет собой разительный контраст с геномом бактерий. Эти промежутки, конечно же, не пусты, но их содержание до сих пор во многом остается загадкой. Большое количество последовательностей между генами приходится на долю повторяющейся ДНК, то есть на многократно повторяющиеся последовательности длиной от нескольких сотен до многих тысяч нуклеотидов. Одни типы повторяющейся ДНК собраны в скопления, другие разбросаны по всему геному. Большинство повторяющейся ДНК не функционально, но она произошла из последовательностей, которые, вероятно, имели какую-то функцию. Большой класс повторяющейся ДНК произошел от транспозонов, то есть сегментов ДНК, способных перемещаться по геному. Такого рода последовательности еще называют мусорной ДНК, но, скорее всего, мы еще не знаем о выполняемых ими важных функциях. Другой класс повторяющейся ДНК охватывает неактивные геномы вирусов, которые когда-то паразитировали в клетках человека и вставили свои последовательности в человеческие хромосомы.

Количество копий повторяющейся ДНК у разных людей неодинаково, поэтому их можно использовать для установления личности, в том числе и в судебной медицине.

Функциональная геномика — это исследование функций генов на уровне всего генома. Хотя потенциальные гены можно определить по сходству с генами, выполняющими известные функции в других организмах, все догадки следует проверять на примере изучаемого организма. В некоторых модельных организмах, например в пищевых дрожжах, можно систематически отключать функцию генов по очереди. Выключение гена происходит посредством замены его функциональной формы стертой формой на особом векторе. Затем получают штамм с выключенным геном и оценивают его фенотип. В ходе продолжающейся программы по анализу генома пищевых дрожжей по очереди было выключено несколько тысяч генов.

Другой метод функциональной геномики заключается в том, что изучают механизм транскрипции на уровне всего генома. Данный метод основан на предположении, что большинство биологических явлений представляют собой сложные процессы с участием многих генов. Особый интерес у исследователей вызывают процессы, связанные с развитием организма, о которых мы упоминали в гл. 11. Если транскрипцию генов изучать в разных условиях роста, то можно составить представление о полных генетических путях развития организма.

Но как можно изучать транскрипцию на уровне всего генома? Опять-таки в этом ученым помогают новые технологии. ДНК каждого гена в геноме или некоторой части генома помещают на поверхности небольших стеклянных пластин, расположенных по порядку. Потом их подвергают воздействию со стороны всех видов мРНК, обнаруженных в клетке данного организма. ДНК на пластинках получают двумя способами. При одном способе все мРНК подвергаются обратной транскрипции, чтобы получить короткие комплементарные молекулы ДНК, соответствующие одному гену. При другом способе гены (или части генов) синтезируются по одному основанию за раз на определенных участках пластин. Синтез осуществляют роботы, открывающие и закрывающие поверхность стекла в определенном порядке. Пластинки с геномом многих организмов можно приобрести в химических компаниях.

Для изучения механизма транскрипции все мРНК определенной стадии развития помечают флуоресцентной меткой и распределяют их по поверхности пластин. Эти мРНК прикрепляются к соответствующим им ДНК, и их можно опознать по светящимся участкам. Поскольку положение каждой ДНК отдельного гена на пластинах известно заранее, компьютер определяет, какие гены транскрибируются на данной стадии развития.

Итак, с помощью этих и других технологий генетики начинают выяснять общие модели организации живого с функциональной и структурной стороны. Для обработки громадного количества информации появилась особая ветвь науки — биоинформатика. Ближайшие десятилетия обещают стать временем поистине великих открытий.


Глава тринадцатая








Дата добавления: 2015-02-28; просмотров: 1380;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.006 сек.