Эксергия

Основываясь на втором начале термодинамики, установим количественное соотношение между работой, которая могла бы быть совершена системой при данных внешних условиях в случае протекания в ней равновесных процессов, и действительной работой, производимой в тех же условиях, при неравновесных процессах.

Рассмотрим изолированную систему, состоящую из горячего источника с тем­пературой Ti, холодного источника (окружающей среды) с температурой То и рабочего тела, совершающего цикл.

Работоспособностью (или эксергией) теплоты Q1, отбираемой от горячего источника с температурой Т1, называется максимальная полезная работа, которая может быть получена за счет этой теплоты при условии, что холодным источником является окружающая среда с температурой Т0.

Из предыдущего ясно, что максимальная полезная работа L'макс теплоты Q1 представляет собой работу равновесного цикла Карно, осуществляемого в диапазоне температур T1 –T0.

,

где

Таким образом, эксергия теплоты Q1

,

т. е. работоспособность теплоты тем больше, чем меньше отношение . При она равна нулю.

Полезную работу, полученную за счет теплоты Q1 горячего источника, можно представить в виде , где — теплота, отдаваемая в цикле холодному источнику (окружающей среде) с температурой .

Если через обозначить приращение энтропии холодного источника, то ,

тогда

, (5.3)

Если бы в рассматриваемой изолированной системе протекали только равно­весные процессы, то энтропия системы оставалась бы неизменной, а увеличение энтропии холодного источника равнялось бы уменьшению энтропии горячего. В этом случае за счет теплоты Q1 можно было бы получить максимальную полезную работу

что следует из уравнения (5.3).

Действительное количество работы, произведенной в этих же условиях, но при неравновесных процессах, определяется уравнением (5.3).

Таким образом, потерю работоспособности теплоты можно записать как , но разность представляет собой изменение энтропии рассматриваемой изолированной системы, поэтому

, (5.4)

Величина определяет потерю работы, обусловленную рассеиванием энергии вследствие неравновесности протекающих в системе процессов. Чем больше неравновесность процессов, мерой которой является увеличение энтропии изолированной системы , тем меньше производимая системой работа.

Уравнение (5.4) называют уравнением Гюи — Стодолы по имени французского физика М. Гюи, получившего это уравнение в 1889 г., и словацкого теплотехника А. Стодолы, впервые применившего это уравнение.








Дата добавления: 2015-02-16; просмотров: 808;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.004 сек.