Расчет сложной цепи постоянного тока

Первый и второй законы Кирхгофа для расчета цепей, правила

составления уравнений

Расчеты таких цепей производят на основе уравнений Кирхгофа.

Первый закон Кирхгофа говорит о том, что в любой момент времени количество электрических зарядов, направленных к узлу, равно количеству зарядов, направленных от узла, откуда следует, что электрический заряд в узле не накапливается. Поэтому алгебраическая сумма токов в ветвях, сходящихся в узле электрической цепи, равна нулю:

(1), где n — число ветвей, сходящихся в узле.

До написания уравнения (1) необходимо задать условные положительные направления токов в ветвях, обозначив эти направления на схеме стрелками. В уравнении (1.18) токи, направленные к узлу, записывают с одним знаком (например, с плюсом), а токи, направленные от узла, с противоположным знаком (с минусом).

 

Приведем пример рис.2. 3. I1 – I2 + I3 – I4 = 0.

I1

I2

I3 I4

 

Рис.2.3

Второй закон Кирхгофа отражает положение о том, что изменение потенциала во всех элементах контура в сумме равно нулю. Из этого следует такая формулировка второго закона Кирхгофа: в любом замкнутом контуре электрической цепи постоянного тока алгебраическая сумма ЭДС равна алгебраической сумме падений напряжений на всех элементах этого контура:

(2), где n – число ЭДС в контуре; m – число элементов с сопротивлением в контуре.

 

При составлении уравнений по второму закону Кирхгофа предварительно задают условные положительные направления токов во всех ветвях электрической цепи и для каждого контура выбирают направление обхода. Если при этом направление ЭДС совпадает с направлением обхода контура, то такую ЭДС берут со знаком плюс, если не совпадает — со знаком минус. Падения напряжений в правой части уравнения (2) берут со знаком плюс, если положительное направление тока в данном элементе цепи совпадает с направлением обхода контура, если не совпадает — со знаком минус.

 

Пример

I1 E1 R1 I2 обход R2 R3 I3 E3

Рис. 2.4

 

Уравнение для замкнутого контура: I1R1 – I2R2 + I3R3 = E1 – Е3

Типичная задача расчета цепи заключается в нахождении токов в ветвях при заданных ЭДС и сопротивлениях нагрузок. Для этого составляются уравнения по законам Кирхгофа. Число уравнений должно соответствовать числу неизвестных.

Пусть электрическая цепь имеет «q» число узлов и «p» число ветвей. Теория говорит, что по первому закону Кирхгофа можно составить«q – 1» число нетождественных уравнений. Тогда по второму закону Кирхгофа нужно составить «p – q + 1» независимых уравнений, что всегда возможно (так говорит теория).

Таким образом, используя законы Кирхгофа можно рассчитать цепь любой сложности. В качестве примера приведем эквивалентную схему зарядки аккумулятора Е2 с внутренним сопротивлением R2. Балластное сопротивление R3 сглаживает пульсации, возникающие в процессе электролиза.

Е1 R1

Одно уравнение для узла: I1 + I2 – I3 = 0

I1 Для контуров два уравнения, составляются

E2 R2 против часовой стрелки.

A Весь внешний контур: I1R1 + I3R3 = E1

I2 Контур с двумя ЭДС: I1R1 – I2R2 = E1 – Е2

I3

R3 Рис. 2.5

 

Если в результате расчета какой-то ток получится с отрицательным знаком, это значит, что мы неверно выбрали первоначальное направление, и он на самом деле течет в противоположном направлении.

 








Дата добавления: 2015-02-16; просмотров: 1382;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.004 сек.