Математическое моделирование
Математическое моделирование основано на решении системы уравнений в дифференциальной или алгебраической форме, описывающих тепловой, воздушный, влажностный и газовый режим помещения.
Ранее основной путь изучения процессов формирования микроклимата состоял в натурных и лабораторных исследованиях. Аналитические решения носили ограниченный характер и основывались частично на экспериментах. Эксперименты дали возможность получить большой объем знаний о физике процессов, а развитие вычислительных технологий позволяет решать дифференциальные уравнения, описывающие эти физические процессы.
Выделяют два вида математических моделей – с распределенными(полностью или частично) и сосредоточенными параметрами.
Модели с распределенными параметрами представляют собой систему уравнений движения, баланса теплоты и массы газовых примесей в дифференциальной форме в частных производных.Система уравнений дополняется краевыми условиями, в состав которых входят граничные и начальные условия. Решение системы позволяет определить трехмерное распределение параметров микроклимата в объеме помещения и изменяющимися во времени. Такие модели, как правило используются при решении исследовательских задач и не имеют широкого распространения в инженерной практике.
Модели с сосредоточенными параметрами наиболее распространены в инженерной практике. Суть модели состоит в том, что все величины в помещении принимаются средними по его объему. Таким образом, распределенные в общем случае параметры микроклимата концентрируются в одной точке, поэтому такие модели называют еще точечными.
Точечные модели состоят из алгебраических уравнений и предназначены, как правило, для ручного счета. С их помощью определяют теплопотери и теплопоступления в помещение, выделение вредностей, определение установочной производительности и решают широкий круг других задач обеспечения микроклимата.
Вместе с тем подобные модели могут быть предназначены для решения нестационарных задач формирования микроклимата и поэтому включают уравнения и в дифференциальной форме.
3 Физическое моделирование
Ранее, когда вычислительные возможности были ограничены, основу изучения процессов формирования микроклимата составляло физическое моделирование, которое осуществлялось в натурных условиях и нм геометрически подобных моделях.
Натурные исследования проводят на действующих объектах. Возможны разовые обследования и длительные наблюдения (мониторинг) за объектом.
Изучение свойств объекта в натурных условиях наиболее достоверно. Однако затруднительно установить закономерности процессов из-за большого числа случайных помех. Этот недостаток скрывается при длительном наблюдении объекта. При последующем осреднении результатов случайные факторы, действующие в ту или иную сторону, взаимно погашаются, проявляя таким образом основную закономерность процесса.
Помимо натурных обследований, возможно воспроизведение процессов в лабораторных условиях на моделях, подобных натурному объекту. Применительно к моделированию процессов формирования микроклимата различают геометрическое, механическое и тепловое подобие.
Геометрическое подобиеобусловленоравенством углов и пропорциональностью сходственных сторон в сравниваемых геометрических фигурах.
Под механическим подобием понимается пропорциональность скоростей и ускорений двух потоков, а также подобие сил, вызывающих подобные движения.
При тепловом подобии сохраняется подобие температуры и тепловых потоков.
Дата добавления: 2015-02-16; просмотров: 1456;