Потенциал электрического поля

 

Тело, находящееся в потенциальном поле сил (а электростатическое поле является потенциальным), обладает потенциальной энергией, за счет которой силами поля совершается работа (см. § 12). Как известно (см.(12.2)), работа консервативных сил совершается за счет убыли потенциальной энергии. Поэтому работу (83.1) сил электростатического поля можно представить как разность потенциальных энергий, которыми обладает точечный заряд Q0 в начальной и конечной точках поля заряда Q:

 

(84.1)

 

откуда следует, что потенциальная энергия заряда Q0 в поле заряда Q равна

Она, как и в механике, определяется неоднозначно, а с точностью до произвольной постоянной С. Если считать, что при удалении заряда в бесконечность (r ® ¥) потенциальная энергия обращается в нуль (U = 0), то С = 0 и потенциальная энергия заряда Q0, находящегося в поле заряда Qна расстоянии г от него, равна

(84.2)

Для одноименных зарядов Q0Q > 0 и потенциальная энергия их взаимодействия (отталкивания) положительна, для разноименных зарядов Q0Q < 0и потенциальная энергия их взаимодействия (притяжения) отрицательна.

Если поле создается системой л точечных зарядов Q1, Q2, …, Qn, то работа электростатических сил, совершаемая над зарядом Q0. равна алгебраической сумме работ сил, обусловленных каждым из зарядов в отдельности. Поэтому потенциальная энергия U заряда Q0, находящегося в этом поле, равна сумме потенциальных энергий Ui каждого из зарядов:

(84.3)

Из формул (84.2) и (84.3) вытекает, что отношение U/Q0не зависит от Q0 и является поэтому энергетической характеристикой электростатического поля, называемой потенциалом:

(84.4)

Потенциал j в какой-либо точке электростатического поля есть физическая величина, определяемая потенциальной энергией единичного положительного заряда, помещенного в эту точку.

Из формул (84.4) и (84.2) следует, что потенциал поля, создаваемого точечным зарядом Q, равен

(84.5)

Работа, совершаемая аилами электростатического поля при перемещении заряда Q0 из точки 1 в точку 2 (см. (84.1), (84.4), (84.5)), может быть представлена как

(84.6)

т. е. равна произведению перемещаемого заряда на разность потенциалов в начальной и конечной точках. Разность потенциалов двух точек 1 и 2 в электростатическом поле определяется работой, совершаемой силами поля, при перемещении единичного положительного заряда из точки 1в точку 2.

Работа сил поля при перемещении заряда Q0из точки 1в точку 2 может быть записана также в виде

(84.7)

Приравняв (84.6) и (84.7), придем к выражению для разности потенциалов:

(84.8)

где интегрирование можно производить вдоль любой линии, соединяющей начальную и конечную точки, так как работа сил электростатического поля не зависит от траектории перемещения.

Если перемещать заряд Q0из произвольной точки за пределы поля, т. е. в бесконечность, где, по условию, потенциал равен нулю, то работа сил электростатического поля, согласно (84.6), А¥ =О0j,откуда

(84.9)

Таким образом, потенциал — физическая величина, определяемая работой по перемещению единичного положительного заряда при удалении его из данной точки поля в бесконечность. Эта работа численно равна работе, совершаемой внешними силами (против сил электростатического поля) по перемещению единичного положительного заряда из бесконечности в данную точку поля.

Из выражения (84.4) следует, что единица потенциала — вольт (В): 1 В есть потенциал такой точки поля, в которой заряд в 1 Кл обладает потенциальной энергией 1 Дж (1 В=1 Дж/Кл). Учитывая размерность вольта, можно показать, что введенная в § 79 единица напряженности электростатического поля действительно равна 1 В/м: 1 Н/Кл=1 Н×м/(Кл×м)=1 Дж/(Кл×м)=1 В/м.

Из формул (84.3) и (84.4) вытекает, что если поле создается несколькими зарядами, то потенциал поля системы зарядов равен алгебраической сумме потенциалов полей всех этих зарядов:








Дата добавления: 2015-02-13; просмотров: 868;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.004 сек.