Проекционные свойства плоских кривых
Допустим, что данная кривая l лежит в некоторой плоскости W. Спроецируем кривую l на плоскость проекций П¢ по направлению s в соответствии с рисунком 1.2.27. Тогда каждая точка М кривой l будет проецироваться в точку М¢ плоскости П¢. В результате на плоскости П¢ получится кривая l¢ – проекция данной кривой l.
Рисунок 1.3.27 – Проекционные свойства плоских кривых
Кривая l¢ будет обладать теми свойствами оригинала - кривой l, которые сохраняются при параллельном проецировании.
Рассмотрим основные свойства проекций плоских кривых линий.
Порядок плоской алгебраической кривой при параллельном проецировании не изменяется.
Проведём секущую m кривой l, лежащей в плоскости W. Тогда в проекции получим прямую m¢, а точки пересечения линий m и l спроецируются в точки пересечения проекций m¢ и l¢ в соответствии с рисунком 1.3.27.
Таким образом, число точек пересечения линий m и l будет равно числу точек пересечения их проекций m¢ и l¢, т.е. порядок проекции l¢ будет равен порядку кривой l.
Бесконечно удалённые точки кривой проецируются в бесконечно удалённые точки её проекции.
При перемещении некоторой точки М по кривой l её проекция М¢ будет перемещаться по кривой l¢. При удалении точки М в бесконечность в соответствии с рисунком 1.3.27 её проекция также станет бесконечно удалённой точкой.
Касательная к кривой проецируется в касательную к её проекции.
Точка А¢ есть проекция точки А. Прямая t¢ является проекцией прямой t, касательной к кривой l в точке А.
Число точек пересечения плоских кривых сохраняется при проецировании.
Плоские кривые в частном случае (когда направление проецирования параллельно плоскости кривой) могут проецироваться в прямые линии, а в случае параллельности плоскости кривой и плоскости проекций соответствующая проекция кривой будет конгруэнтна самой кривой.
Дата добавления: 2015-02-13; просмотров: 585;