РЕГУЛЯЦИЯ ОБМЕНА УГЛЕВОДОВ
Печень отличается наиболее сложным обменом глюкозы по сравнению с другими органами. В ней происходят противоположные процессы: синтез/распад гликогена и гликолиз/глюконеогенез.
Направление метаболизма глюкозы в печени связано с ритмом питания.
Переключение процессов синтеза и мобилизации гликогена в печени происходит при переходе состояния пищеварения в постабсорбтивный период или состояния покоя на режим мышечной работы.
Абсорбтивным периодомназывают период пищеварения.
Постабсорбтивным называют период после завершения пищеварения до следующего приема пищи.
В переключении этих метаболических путей в печени участвуют инсулин, глюкагон и адреналин, а в мышцах - инсулин и адреналин. Их влияние осуществляется путем изменения в противоположном направлении активности двух ключевых ферментов - гликогенсинтазы и гликогенфосфорилазы - с помощью фосфорилирования и дефосфорилирования.
Инсулин и глюкагон постоянно присутствуют в крови, но при переходе из абсорбтивного состояния в постабсорбтивное изменяется их относительная концентрация (рис. 42) – инсулин-глюкагоновый индекс.
В период пищеварения инсулин-глюкагоновый индекс повышается. Под влиянием инсулина стимулируется транспорт глюкозы в клетки мышечной ткани, изменяются активность и количество ферментов путем фосфорилирования и дефосфорилирования, индукция их синтеза. Введение инсулина вызывает понижение содержания глюкозы в крови, повышение запасов гликогена в мышцах.
В постабсорбтивном периоде инсулин-глюкагоновый индекс снижается, и решающим фактором является влияние глюкагона, который стимулирует распад гликогена в печени. Механизм действия глюкагона включает каскад реакций, приводящий к активации гликогенфосфорилазы. Итогом является увеличение концентрации глюкозы в крови.
Рис. 42. Изменение концентраций глюкозы, инсулина, глюкагона после приема пищи |
Биосинтез и секреция инсулина и глюкагона контролируются главным образом концентрацией глюкозы по принципу обратной связи. Повышение содержания глюкозы в крови вызывает увеличение секреции инсулина и замедление секреции глюкагона, а снижение, наоборот, замедление секреции инсулина и повышение – глюкагона. Этот контроль по типу обратной связи - один из важнейших механизмов регуляции содержания глюкозы в крови.
Адреналинповышает уровень обмена углеводов в организме, усиливая распад гликогена в мышцах и ингибируя синтез гликогена из УДФ-глюкозы. Он вызывает резкое повышение уровня глюкозы в крови.
Переключение печени с гликолиза на глюконеогенез и наоборот также происходит с участием инсулина и глюкагона и осуществляется с помощью:
- аллостерических механизмов;
- фосфорилирования/дефосфорилирования;
- индукции/репрессии синтеза ключевых ферментов.
Регуляция направлена на необратимые стадии гликолиза и глюконеогенеза.
При уменьшении инсулин-глюкагонового индекса синтез ключевых ферментов гликолиза снижается, а ферментов глюконеогенеза (фосфоенолпируваткарбоксикиназа, фруктозо-6-фосфатаза, глюкозо-6-фосфатаза) - увеличивается, и стимулируется глюконеогенез.
Направление реакций гликолиза регулируется содержанием глюкозы. При пищеварении концентрация глюкозы в крови возрастает до 10-20 мкмоль/л и активность глюкокиназы будет максимальной. Ускоряется гликолитическая реакция
глюкоза → глюкозо-6-фосфат.
Инсулин индуцирует синтез глюкокиназы и поэтому ускоряет фосфорилирование глюкозы.
Важная роль в регуляции гликолиза и глюконеогенеза принадлежитфруктозо-2,6-бисфосфату. Фруктозо-2,6-бисфосфат образуется фосфорилированием фруктозо-6-фосфата при участии бифункционального фермента (БИФ).Этот фермент обладает двумя видами ферментативной активности:
Киназная активность проявляется при дефосфорилированной форме БИФ, которая характерна для абсорбтивного периода (инсулин-глюкагоновый индекс высокий). Увеличивается количество фруктозо-2,6-бисфосфата, который аллостерически активирует фосфофруктокиназу – гликолиз усиливается. Фруктозо-2,6-бисфосфат также ингибирует фосфатазу фруктозо-1,6-бифосфата (замедляется глюконеогенез).
Фосфатазная активность проявляется при фосфорилированной форме БИФ (длительное голодание, инсулин/глюкагоновый индекс низкий): снижается количество фруктозо-2,6-бисфосфата, гликолиз замедляется и переключается на глюконеогенез.
В период пищеварения инсулин активирует протеинфосфатазу, которая дефосфорилирует пируваткиназу и переводит ее в активное состояние: реакция
фосфоенолпируват → пируват (гликолитическая)
ускоряется при пищеварении и замедляется в постабсорбтивном периоде.
Реакции глюконеогенеза
пируват → оксалоацетат → фосфоенолпируват
могут протекать при любом состоянии организма.
В период пищеварения из-за ускорения начальных стадий гликолиза повышается содержание фруктозо-1,6-бисфосфата, что ведет к активации пируваткиназы (гликолиз усиливается).
После приема пищи, богатой углеводами, инсулин-глюкагоновый индекс возрастает, увеличивается количество глюкокиназы, фосфофруктокиназы, пируваткиназы (гликолитические ферменты), и стимулируется гликолитический путь.
Глюкоза в клетках печени используется также для энергообеспечения гепатоцитов. Основными потребителями АТФ в гепатоцитах являются трансмембранный перенос веществ, синтез белков, гликогена, жиров, глюконеогенез.
АТФ и АМФ – аллостерические эффекторы некоторых гликолитических ферментов: АМФ активирует гексокиназу, фосфофруктокиназу и пируваткиназу и ингибирует фосфатазу фруктозо-1,6-бисфосфата. АТФ ингибирует фосфофруктокиназу и пируваткиназу. Т.о., при расходовании АТФ (растет концентрация АМФ) активируются гликолиз и синтез АТФ, глюконеогенез замедляется.
Дата добавления: 2015-02-10; просмотров: 1581;