Лекция 5 (9-10) Законы сохранения
План
1. Центр масс (центр инерции) механической системы и закон его движения. Закон сохранения импульса как фундаментальный закон природы.
2. Работа силы и ее выражение через интеграл. Мощность. Закон сохранения энергии в механике. Закон сохранения момента импульса.
Тезисы
1. Центр масс (или центр инерции) системы материальных точек - воображаемая точка С, положение которой характеризует распределение массы этой системы. Радиус-вектор центра масс , где mi и ri — соответственно масса и радиус-вектор i-й материальной точки; n — число материальных точек в системе. Скорость центра масс . Импульс системы материальных точек , т. е. импульс системы равен произведению массы системы на скорость ее центра масс. Закон движения центра масс , т. е. центр масс системы движется как материальная точка, в которой сосредоточена масса всей системы и на которую действует сила, равная геометрической сумме всех внешних сил, действующих на систему. Производная по времени от импульса механической системы равна геометрической сумме внешних сил, действующих на систему . В случае отсутствия внешних сил (замкнутая система) или
Закон сохранения импульса: импульс замкнутой системы сохраняется. Этот закон – фундаментальный закон природы (он универсален), следствие однородности пространства. Однородность пространства заключается в том, что при параллельном переносе в пространстве замкнутой системы тел как целого ее физические свойства и законы движения не изменяются, иными словами, не зависят от выбора положения начала координат инерциальной системы отсчета.
Из закона сохранения импульса вытекает, что центр масс замкнутой системы либо движется прямолинейно и равномерно, либо остается неподвижным.
2. Работа силы – количественная характеристика процесса обмена энергией между взаимодействующими телами. Работа постоянной силы, составляющей угол с направлением прямолинейного движения тела равна произведению проекции силы Fs на направление перемещения, умноженной на перемещение точки приложения силы.
В общем случае сила может изменяться как по модулю, так и по направлению, поэтому вышеуказанной формулой пользоваться нельзя. Элементарная работа силы F на перемещении -скалярная величина , где - угол между векторами F и dr; ds = |dr| — элементарный путь; Fs — проекция вектора F на вектор dr (рис. 13).
Работа силы на участке траектории от точки 1 до точки 2 равна алгебраической сумме элементарных работ на отдельных бесконечно малых участках пути. Эта сумма приводится к интегралу Для вычисления этого интеграла надо знать зависимость силы Fs от пути s вдоль траектории 1—2. Если эта зависимость представлена графически (рис. 14), тогда искомая работа А определяется на графике площадью закрашенной фигуры.
При a<p/2 работа силы положительна, в этом случае составляющая Fs совпадает по направлению с вектором скорости движения v (см. рис. 13). Если a>p/2, то работа силы отрицательна. При a=p/2 (сила направлена перпендикулярно перемещению) работа силы равна нулю. Единица работы — джоуль(Дж): 1 Дж — работа, совершаемая силой в 1 Н на пути в 1 м (1 Дж = 1 Н•м).
Мощность – скалярная физическая величина, характеризующая скорость совершения работы или . Единица мощности — ватт (Вт): 1 Вт — мощность, при которой за время 1 с совершается работа в 1 Дж (1 Вт = 1 Дж/с).
Кинетическая энергия механической системы — это энергия механического движения этой системы. Связь работы и кинетической энергии: работа силы на пути, который тело прошло за время возрастания скорости от 0 до v, идет на увеличение кинетической энергии тела, т. е. . Тело массой т, движущееся со скоростью v, обладает кинетической энергией . Характерные свойства кинетической энергии: 1) всегда положительна; 2) неодинакова в разных системах отсчета; 3) является функцией состояния системы. Работа силы при перемещении из точки 1 в точку 2
или
Теорема о кинетической энергии: Приращение кинетической энергии материальной точки на некотором перемещении равно алгебраической сумме работ всех сил, действующих на точку на том же перемещении
Потенциальное поле – поле, в котором работа, совершаемая силами при перемещении тела из одного положения в другое, не зависит от того, по какой траектории это перемещение произошло, а зависит только от начального и конечного положения. Работа консервативных сил по замкнутой траектории Потенциальная энергия — механическая энергия системы тел, определяемая их взаимным расположением и характером сил взаимодействия между ними. Характерные особенности потенциальной энергии: Потенциальную энергию тела в каком-то определенном положении считают равной нулю, а энергию тела в других положениях отсчитывают относительно нулевого уровня. Потенциальная энергия может быть определена по формуле , где С — постоянная интегрирования, т. е. потенциальная энергия определяется с точностью до некоторой произвольной постоянной. Связь между консервативной силой и потенциальной энергией , где - градиент.
Конкретный вид функции П зависит от характера силового поля. Например, потенциальная энергия тела массой т, поднятого на высоту h над поверхностью Земли, равна , Потенциальная энергия упругодеформированного тела (пружины) Потенциальная энергия системы, подобно кинетической энергии, является функцией состояния системы. Она зависит только от конфигурации системы и ее положения по отношению к внешним телам. Полная механическая энергия системы — энергия механического движения и взаимодействия, т. е. равна сумме кинетической и потенциальной энергий
Закон сохранения механической энергии: в системе тел, между которыми действуют только консервативные силы, полная механическая энергия сохраняется, т. е. не изменяется со временем
Механические системы, на тела которых действуют только консервативные силы (внутренние и внешние), называются консервативными системами. Закон сохранения механической энергии можно сформулировать так: в консервативных системах полная механическая энергия сохраняется.
Закон сохранения механической энергии – следствие однородности времени, т. е. физические законы инвариантны относительно выбора начала отсчета времени. Например, при свободном падении тела в поле сил тяжести его скорость и пройденный путь зависят лишь от начальной скорости и продолжительности свободного падения тела и не зависят от того, когда тело начало падать.В системе, в которой действуют также неконсервативные силы, например силы трения, полная механическая энергия системы не сохраняется.
Момент импульса материальной точки А относительно неподвижной точки О - физическая величина, определяемая векторным произведением , где r — радиус-вектор, проведенный из точки О в точку A; p - импульс материальной точки (рис.28); L—псевдовектор, его направление совпадает с направлением поступательного движения правого винта при его вращении от r к p. Модуль вектора момента импульса , где — угол между векторами r и p, l — плечо вектора р относительно точки О. Момент импульса относительно неподвижной оси z - скалярная величина Lz, равная проекции на эту ось вектора момента импульса, определенного относительно произвольной точки О данной оси. Значение момента импульса Lz не зависит от положения точки О на оси z. Момент импульса отдельной частицы направлен по оси в сторону, определяемую правилом правого винта. Момент импульса твердого тела относительно оси есть сумма моментов импульса отдельных частиц или : Момент импульса твердого тела относительно оси равен произведению момента инерции тела относительно той же оси на угловую скорость.
Если продифференцировать это уравнение по времени, то получим еще одну форму уравнения (или закона) динамики вращательного движения твердого тела относительно неподвижной оси : производная момента импульса твердого тела относительно оси равна моменту сил относительно той же оси или производная вектора момента импульса твердого тела равна моменту (сумме моментов) внешних сил В замкнутой системе момент внешних сил равен нулю, поэтому . Это выражение - закон сохранения момента импульса: момент импульса замкнутой системы сохраняется, т. е. не изменяется с течением времени. Закон сохранения момента импульса — фундаментальный закон природы, он связан со свойством симметрии пространства — его изотропностью, т.е. с инвариантностью физических законов относительно выбора направления осей координат системы отсчета (относительно поворота замкнутой системы в пространстве на любой угол).
Продемонстрировать закон сохранения момента импульса можно с помощью скамьи Жуковского. Пусть человек, сидящий на скамье, которая без трения вращается вокруг вертикальной оси, и держащий в вытянутых руках гантели (рис. 29), приведен во вращение с угловой скоростью w1. Если человек прижмет гантели к себе, то момент инерции системы уменьшится. Поскольку момент внешних сил равен нулю, момент импульса системы сохраняется и угловая скорость вращения w2 возрастает.
Дата добавления: 2015-01-29; просмотров: 1156;