Обманчивые сосуды

 

В старину — в XVII и XVIII веках — вельможи забавлялись следующей поучительной игрушкой: изготовляли кружку (или кувшин), в верхней части которой имелись крупные узорчатые вырезы (рис. 7.16, стр. 326). Такую кружку, налитую вином, предлагали незнатному гостю, над которым можно было безнаказанно посмеяться. Как пить из нее? Наклонить — нельзя: вино польется из множества сквозных отверстий, а до рта не достигнет ни капли. Случится, как в сказке: «Мед, пиво пил, да усы лишь обмочил».

 

 

Рмс. 7.16. Обманчивый кувшин конца XVIII века и секрет его устройства

 

Но кто знал секрет устройства подобных кружек, — секрет, который показан на рис. 63 справа, — тот затыкал пальцем отверстие В, брал в рот носик и втягивал в себя жидкость, не наклоняя сосуда: вино поднималось через отверстие Е по каналу внутри ручки, далее по его продолжению С внутри верхнего края кружки и достигало носика.

Не так давно еще подобные кружки изготовлялись нашими гончарами. Мне случилось в одном доме видеть образчик их работы, довольно искусно скрывающей секрет устройства сосуда; на кружке была надпись: «Пей, но не облейся».

 

Сколько весит вода в опрокинутом стакане?

 

— Ничего, конечно, не весит: в таком стакане вода не держится, выливается, — скажете вы.

— А если не выливается? — спрошу я. — Что тогда?

В самом деле, возможно ведь удержать воду в опрокинутом стакане так, чтобы она не выливалась. Этот случай изображен на рис. 7.17. Опрокинутый стеклянный бокал, подвязанный за донышко к одной чашке весов, наполнен водой, которая не выливается, так как края бокала погружены в сосуд с водой. На другую чашку весов положен точно такой же пустой бокал.

Какая чашка весов перетянет?

 

Рис. 7.17. Какая чашка перетянет?

 

Перетянет та, к которой привязан опрокинутый бокал с водой. Этот бокал испытывает сверху полное атмосферное давление, снизу же — атмосферное давление, ослабленное весом содержащейся в бокале воды. Для равновесия чашек необходимо было бы наполнить водою бокал, помещенный на другую чашку.

При указанных условиях, следовательно, вода в опрокинутом стакане весит столько же, сколько и в поставленном на дно.

 

Отчего притягиваются корабли?

 

Осенью 1912 г. с океанским пароходом «Олимпик» — тогда одним из величайших в мире судов — произошел следующий случай. «Олимпик» плыл в открытом море, а почти параллельно ему, на расстоянии сотни метров, проходил с большой скоростью другой корабль, гораздо меньший, броненосный крейсер «Гаук». Когда оба судна заняли положение, изображенное на рис. 7.18, произошло нечто неожиданное: меньшее судно стремительно свернуло с пути, словно повинуясь какой‑то невидимой силе, повернулось носом к большому пароходу и, не слушаясь руля, двинулось почти прямо на него. Произошло столкновение. «Гаук» врезался носом в бок «Олпмпика»; удар был так силен, что «Гаук» проделал в борту «Олимпика» большую пробоину.

 

Рис. 7.18. Положение пароходов «Олимпик» и «Гаук»

перед столкновением

 

Когда этот странный случай рассматривался в морском суде, виновной стороной был признан капитан гиганта «Олимпик», так как, — гласило постановление суда, — он не отдал никаких распоряжений уступить дорогу идущему наперерез «Гауку».

Суд не усмотрел здесь, следовательно, ничего необычайного: простая нераспорядительность капитана, не больше. А между тем, имело место совершенно непредвиденное обстоятельство: случай взаимного притяжения судов на море.

Такие случаи не раз происходили, вероятно, и раньше при параллельном движении двух кораблей. Но пока не строили очень крупных судов, явление это не проявлялось с такой силой. Когда воды океанов стали бороздить «плавучие города», явление притяжения судов сделалось гораздо заметнее; с ним считаются командиры военных судов при маневрировании.

Многочисленные аварии мелких судов, проплывавших в соседстве с большими пассажирскими и военными судами, происходили, вероятно, по той же причине.

Чем же объясняется это притяжение? Конечно, здесь не может быть и речи о притяжении по закону всемирного тяготения Ньютона; мы уже видели, что то притяжение слишком ничтожно. Причина явления совершенно иного рода и объясняется законами течения жидкостей в трубках и каналах. Можно доказать, что если жидкость протекает по каналу, имеющему сужения и расширения (Рис. 7.19), то в узких частях канала она течет быстрее и давит на стенки канала слабее, нежели в широких местах, где она протекает спокойнее и давит на стенки сильнее (так называемый «принцип Бернулли»).

 

Рис. 7.19. В узких частях канала вода течет быстрее и давит на стенки слабее, чем в широких

 

То же справедливо и для газов. Это явление в учении о газах носит название эффекта Клеман — Дезорма (по имени открывших его физиков) и нередко именуется «аэростатическим парадоксом». Впервые явление это, как говорят, обнаружено было случайно при следующих обстоятельствах. В одном из французских рудников рабочему приказано было закрыть щитом отверстие наружной штольни, через которую подавался в шахту сжатый воздух. Рабочий долго боролся со струёй воздуха, но внезапно щит сам собой захлопнул штольню с такой силой, что, будь щит недостаточно велик, его втянуло бы в вентиляционный люк вместе с перепуганным рабочим.

Между прочим, этой особенностью течения газов объясняется действие пульверизатора. Когда мы дуем (рис. 7.20, стр. 329) в колено а, заканчивающееся сужением, то воздух, переходя в сужение, уменьшает свое давление. Таким образом, над трубкой b оказывается воздух с уменьшенным давлением, и потому давление атмосферы гонит жидкость из стакана вверх по трубке; у отверстия жидкость попадает в струю выдуваемого воздуха и в нем распыляется.

Теперь мы поймем, в чем кроется причина притяжения судов. Когда два парохода плывут параллельно один другому, между их бортами получается как бы водяной канал. В обыкновенном канале стенки неподвижны, а движется вода; здесь же наоборот: неподвижна вода, а движутся стенки. Но действие сил от этого нисколько не меняется: в узких местах подвижного капала вода слабее давит на стенки, нежели в пространстве вокруг пароходов. Другими словами, бока пароходов, обращенные друг к другу, испытывают со стороны воды меньшее давление, нежели наружные части судов. Что же должно произойти вследствие этого? Суда должны под напором наружной воды двинуться друг к другу, и естественно, что меньшее судно перемещается заметнее, между тем как более массивное остается почти неподвижным. Вот почему притяжение проявляется с особенной силой, когда большой корабль быстро проходит мимо маленького (рис. 7.21).

 

Рис. 7.20. Пульверизатор

 

Рис. 7.21. Течение воды между двумя плывущими судами

 

Итак, притяжение кораблей обусловлено всасывающим действием текущей воды. Этим же объясняется и опасность быстрин для купающихся, всасывающее действие водоворотов. Можно вычислить, что течение воды в реке при умеренной скорости 1 м в секунду втягивает человеческое тело с силой 30 кг! Против такой силы не легко устоять, особенно в воде, когда собственный вес нашего тела не помогает нам сохранять устойчивость. Наконец, втягивающее действие быстро несущегося поезда объясняется тем же принципом Бернулли: поезд при скорости 50 км в час увлекает близстоящего человека с силой около 8 кг.

Явления, связанные с «принципом Бернулли», хотя и весьма нередки, мало известны в кругу неспециалистов. Полезно будет поэтому остановиться на нем подробнее. Далее мы приводим отрывок из статьи на эту тему, помещенной в одном научно‑популярном журнале.

 








Дата добавления: 2015-01-29; просмотров: 1198;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.009 сек.