Движение жидкости в пласте с неоднородной проницаемостью
Проницаемость в различных точках продуктивных пластов не является строго постоянной величиной. Иногда изменение проницаемости по пласту носит столь хаотичный характер, что пласт можно рассматривать в среднем однородно проницаемым.
Если изменение проницаемости носит не случайный характер, а на значительном протяжении пласта имеет место определенные закономерности в изменении проницаемости, тогда движение жидкостей и газов существенно отличается от движения их в однородных пластах.
Отметим следующие простейшие случаи неоднородности пластов.
1.Пласт состоит из нескольких слоев (рис.4.14, 4.15, стр. 191).
В пределах каждого слоя проницаемость в среднем одинакова и скачкообразно изменяется при переходе от одного слоя к другому. Допустим, что все n слоев горизонтальный, мощность i-го слоя h1, проницаемость соответствующего слоя k1. На одном конце каждого слоя давление равно рк, на другом – рr.
Если движение жидкости прямолинейно – параллельное (см. рис. 4.14) по закону Дарси, то распределение давление р в каждом слое линейное и характеризуется уравнением
(4.63)
дебит потока вычисляется по формуле
(4.64)
а средний коэффициент проницаемости по формуле
(4.65)
В случае плоскорадиального движения жидкости в многослойном пласте к гидродинамически совершенной скважине по закону Дарси (см. рис. 4.15) давление в каждом слое меняется по логарифмическому закону
(4.66)
дебит скважины определяется по формуле
(4.67)
а средний коэффициент проницаемости пласта и в этом случае находится по (4.65).
2.Пласт состоит из нескольких зон различной проницаемости (рис. 4.16, 4.17, стр. 192)
На границе двух зон проницаемость меняется скачкообразно, а в пределах одной и той же зоны проницаемость в среднем одинакова. С неоднородностью такого рода можно встретиться, например, при соприкосновении двух разных пластов вдоль сброса или в случае наличия порога фациальной изменчивости одного и того же пласта.
Рис. 4.14, 4.15. Многослойный пласт
Рис. 4.16. Пласт с зонами различной проницаемости
Рис. 4.17. Зоны кольцеобразной формы
Допустим, что горизонтальный пласт мощностью h, длиной l с непроницаемыми кровлей и подошвой состоит из n зон различной проницаемости, длина i-той зоны li, коэффициент проницаемости ki (cм. рис. 4.16).
При прямолинейно – параллельной фильтрации жидкости в таком пласте по закону Дарси дебит фильтрационного потока рассчитывается по формуле
(4.66)
где В – ширина потока.
Средний коэффициент проницаемости
(4.67)
При n=2 распределение давления в первой зоне р1 и во второй – р2 описывается уравнениями:
(4.68)
Если при плоскорадиальном притоке жидкости к гидродинамически совершенной скважине по закону Дарси зоны различной проницаемости пласта имеют кольцеобразную форму (см. рис. 4.17), то формула дебита скважины имеет вид:
(4.69)
где k1- коэффициент проницаемости зоны за номером i; ri-1 и r1 – соответственно внутренний и внешний радиусы этой зоны, причём r0=r0, a rn = Rk.
Средний коэффициент проницаемости в этом случае находится по формуле
При n=2 распределение давления в первой зоне р1 и во второй зоне р2 определяется по формулам
(4.70)
3.Проницаемость пласта непрерывно изменяется, увеличиваясь или уменьшаясь в определенном направлении.
Допустим, что при плоскорадиальном течении коэффициент проницаемости изменяется по линейному закону
У забоя скважины коэффициент проницаемости равен kc, а на контуре питания (r=Rx) k=k0. Фильтрация жидкости происходит по закону Дарси. В этом случае формула для дебита имеет вид:
(4.71)
Дата добавления: 2015-01-29; просмотров: 2801;