Математические выражения, описывающие волновые процессы
В связи с многообразием, нелинейностью свойств субстанции, особенностями границ и способов возбуждения, пользуются свойством разложения любых, самых сложных колебаний в спектр по частотам отклика субстанции на возбуждение. Для дискретных спектров наиболее общим решением моделирующих уравнений является выражение, которое удобно представлять в комплексной форме:
где – номер моды, гармоники спектра; – постоянные фазы запаздывания колебаний данной моды, определяемые, как правило, различием реакции динамической системы в точке её возбуждения, а также особенностями границ; они могут в общем случае иметь как действительный, так и комплексных вид; – количество мод в спектре, которое может быть и бесконечным. Мода с называется основной модой, гармоникой. С нею переносится самая большая часть энергии волнового процесса. Для интегральных спектров вместо сумм записываются интегралы по частотам спектра. В дискретных структурах имеют место три режима колебательного процесса: периодический, критический, и апериодический.
В идеальной дискретной системе переход от одного режима к другому определяется разностью фаз колебания соседних элементов. При достижении противофазности колебаний система переходит от периодического режима к критическому. В апериодическом режиме противофазность колебаний соседних элементов сохраняется, но от точки возбуждения идёт интенсивное затухание колебательного процесса последующих элементов системы. Данный режим проявляется и в конечных упругих линиях.
В линиях с сопротивлением колебания соседних элементов никогда не достигают противофазности. Тем не менее, особенности колебаний, характерные для апериодического режима, сохраняются и при наличии сопротивления.
Дата добавления: 2015-01-21; просмотров: 857;