Теоретическое введение. Во всех реальных жидкостях и газах при перемещении одного слоя относительно другого возникают силы трения

 

Во всех реальных жидкостях и газах при перемещении одного слоя относительно другого возникают силы трения. Со стороны слоя, движущегося более быстро, на слой, движущийся медленнее, действует ускоряющая сила. Наоборот, со стороны слоя, движущегося медленнее, на более быстрый слой действует тормозящая сила. Эти силы, носящие название сил внутреннего трения, направлены по касательной к поверхности слоёв.

Пусть два слоя (рис.16.1) площади , отстоящих друг от друга на расстояние , движутся со скоростями v1 и v2 соответственно, Δv=v2–v1. Направление, в котором отсчитывается расстояние между слоями (ось z), перпендикулярно вектору скорости движения слоев. Величина

,

которая показывает, как быстро меняется скорость при переходе от слоя к слою, называется градиентом скорости. Величина силы внутреннего трения , действующей между слоями, пропорциональна площади соприкосновения движущихся слоёв и градиенту скорости (закон Ньютона):

, (16.1)

где – коэффициент вязкости (динамическая вязкость). Знак «–» показывает, что сила направлена противоположно градиенту скорости, то есть быстрый слой тормозится, а медленный – ускоряется.

Единицей измерения коэффициента вязкости в СИ служит такая вязкость, при которой градиент скорости, равный 1 м/с на 1м, приводит к силе внутреннего трения в 1 Н на 1 м2 площади слоев. Эта единица называется паскаль-секундой (Па.с). В некоторые формулы (например, число Рейнольдса, формула Пуазейля) входит отношение коэффициента вязкости к плотности жидкости ρ. Это отношение получило название коэффициента кинематическойвязкости :

. (16.2)

Для жидкостей, течение которых подчиняется уравнению Ньютона (16.1), вязкость не зависит от градиента скорости. Такие жидкости называются ньютоновскими. К неньютоновским (то есть не подчиняющимся уравнению (16.1)) жидкостям относятся жидкости, состоящие из сложных и крупных молекул, например, растворы полимеров.

Вязкость данной жидкости сильно зависит от температуры: при изменениях температуры, которые сравнительно нетрудно осуществить на опыте, вязкость некоторых жидкостей может изменяться в миллионы раз. При понижении температуры вязкость некоторых жидкостей настолько возрастает, что жидкость теряет текучесть, превращаясь в аморфное твердое тело.

Я.И. Френкель вывел формулу, связывающую коэффициент вязкости жидкости с температурой:

, (16.3)

где А – множитель, который зависит от расстояния между соседними положениями равновесия молекул в жидкости и от частоты колебаний молекул, ΔЕ – энергия, которую надо сообщить молекуле жидкости, чтобы она могла перескочить из одного положения равновесия в другое, соседнее (энергия активации). Величина ΔЕ обычно имеет порядок (2÷3).10-20 Дж, поэтому, согласно формуле (16.3), при нагревании жидкости на 100С вязкость её уменьшается на 20÷30%.

Значения коэффициентов вязкости газов существенно меньше, чем жидкостей. С повышением температуры вязкость газа увеличивается (рис.16.2) и при критической температуре становится равной вязкости жидкости.

Отличие в характере поведения вязкости при изменении температуры указывает на различие механизма внутреннего трения в жидкостях и газах. Молекулярно-кинетическая теория объясняетвязкость газов переносом импульса из одного слоя в другой слой, происходящим за счет переноса вещества при хаотическом движении молекул газа. В результате в слое газа, движущемся медленно, увеличивается доля быстрых молекул, и его скорость (средняя скорость направленного движения молекул) возрастает. Слой газа, движущийся медленно, увлекается более быстрым слоем, а слой газа, движущийся с большей скоростью, замедляется. С повышением температуры интенсивность хаотического движения молекул газа возрастает, и вязкость газа увеличивается.

Вязкость жидкости имеет другую природу.В силу малой подвижности молекул жидкости перенос импульса из слоя в слой происходит из-за взаимодействия молекул. Вязкость жидкости в основном определяется силами взаимодействия молекул между собой (силами сцепления). С повышением температуры взаимодействие молекул жидкости уменьшается, и вязкость также уменьшается.

Несмотря на различную природу вязкость жидкостей и газов с макроскопической точки зрения описывается одинаковым уравнением (16.1). Величину импульса , перенесенного из одного слоя газа или жидкости в другой слой за время Δt, можно найти из второго закона Ньютона:

. (16.4)

Из (16.1) и (16.4) получим:

. (16.5)

Тогда физический смысл коэффициента динамической вязкости можно сформулировать так: коэффициент вязкости численно равен импульсу, перенесенному между слоями жидкости или газа единичной площади за единицу времени при единичном градиенте скорости. Знак «минус» показывает, что импульс переносится из более быстрого слоя в более медленный.

При движении тела в вязкой среде возникают силы сопротивления. Происхождение этого сопротивления двояко.

При небольших скоростях, когда за телом нет вихрей (то есть обтекание тела ламинарное), сила сопротивления обуславливается вязкостью среды. Между движущимся телом и средой существуют силы сцепления, так что непосредственно вблизи поверхности тела слой газа (жидкости) полностью задерживается, как бы прилипая к телу. Он трется о следующий слой, который слегка отстает от тела. Тот, в свою очередь, испытывает силу трения со стороны еще более удаленного слоя и т.д. Совсем далекие от тела слои можно считать покоящимися. Для ламинарного потока сила трения пропорциональна скорости тела: . Теоретический расчет внутреннего трения для движения шарикав вязкой среде с небольшой скоростью, когда нет вихрей, приводит к формуле Стокса:

, (16.6)

где – радиус шарика, – скорость его движения, – коэффициент динамической вязкости среды.

Второй механизм сил сопротивления включается при больших скоростях движения тела, когда поток становится турбулентным. При увеличении скорости тела вокруг него возникают вихри. Часть работы, совершаемой при движении тела в жидкости или газе, идет на образование вихрей, энергия которых переходит во внутреннюю энергию. При турбулентном потоке в некотором интервале скоростей сила сопротивления пропорциональна квадрату скорости тела: .

 








Дата добавления: 2015-03-19; просмотров: 1438;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.015 сек.