Уравнения, допускающие понижение порядка.

 

В некоторых случаях порядок дифференциального уравнения может быть понижен, что обычно облегчает его интегрирование. Рассмотрим несколько типов подобных уравнений.

 

1. Уравнение не содержит искомой функции и ее производных по порядок (k – 1) включительно:

. (18.6)

В этом случае можно сделать замену р = у(k), которая позволяет понизить порядок уравнения до n – k, так как после замены уравнение примет вид

.

Из этого уравнения можно найти р = р (х, С1 , С2 ,…, Сn-k), а затем найти у с помощью интегрирования k раз функции р = р (х, С1 , С2 ,…, Сn-k).

 

Пример.

Уравнение при замене становится уравнением 1-го порядка относительно р: , откуда . Тогда

.

 

2. Уравнение не содержит независимой переменной:

F ( y, y′,…, y(n)) = 0. (18.7)

Порядок такого уравнения можно понизить на единицу заменой у′ = р(у). При этом производные функции f(x) по аргументу х нужно выразить через производные р по у:

и т.д.

 

Пример.

Пусть тогда . Отметим частное решение р = 0, то есть Если после сокращения на р получим

 

3. Уравнение F (х, y, y′,…, y(n)) = 0 однородно относительно аргументов y, y′,…, y(n), то есть справедливо тождество

В этом случае можно понизить порядок уравнения на единицу, вводя новую неизвестную функцию z, для которой . Тогда и т.д.

 

 








Дата добавления: 2015-03-19; просмотров: 807;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.005 сек.