Производная по направлению. Градиент.
Пусть функция u = f (x, y, z) непрерывна в некоторой области D и имеет в этой области непрерывные частные производные. Выберем в рассматриваемой области точку M(x,y,z) и проведем из нее вектор S, направляющие косинусы которого cosα, cosβ, cosγ. На векторе S на расстоянии Δs от его начала найдем точку М1(х+Δх, у+Δу, z+Δz), где
Представим полное приращение функции f в виде:
где
После деления на Δs получаем:
.
Поскольку предыдущее равенство можно переписать в виде:
(4.6)
Определение 4.3. Предел отношения при называется производной от функции u = f (x, y, z) по направлению вектора Sи обозначается .
При этом из (4.6) получаем:
(4.7)
Замечание 1. Частные производные являются частным случаем производной по направлению. Например, при получаем:
.
Замечание 2. Выше определялся геометрический смысл частных производных функции двух переменных как угловых коэффициентов касательных к линиям пересечения поверхности, являющейся графиком функции, с плоскостями х = х0 и у = у0. Аналогичным образом можно рассматривать производную этой функции по направлению l в точке М(х0 , у0) как угловой коэффициент линии пересечения данной поверхности и плоскости, проходящей через точку М параллельно оси Oz и прямой l.
Определение 4.4. Вектор, координатами которого в каждой точке некоторой области являются частные производные функции u = f (x, y, z) в этой точке, называется градиентомфункции u = f (x, y, z).
Обозначение: grad u = .
Свойства градиента.
1. Производная по направлению некоторого вектора Sравняется проекции вектора grad u на вектор S. Доказательство. Единичный вектор направления S имеет вид eS ={cosα, cosβ, cosγ}, поэтому правая часть формулы (4.7) представляет собой скалярное произведение векторов grad u и es, то есть указанную проекцию.
2. Производная в данной точке по направлению вектора S имеет наибольшее значение, равное |grad u |, если это направление совпадает с направлением градиента. Доказательство. Обозначим угол между векторами Sи grad u через φ. Тогда из свойства 1 следует, что |grad u |∙cosφ, (4.8) следовательно, ее наибольшее значение достигается при φ=0 и равно |grad u |.
3. Производная по направлению вектора, перпендикулярного к вектору grad u , равна нулю.
Доказательство. В этом случае в формуле (4.8)
4. Если z = f (x,y) – функция двух переменных, то grad f = направлен перпендикулярно к линии уровня f (x,y) = c, проходящей через данную точку.
Дата добавления: 2015-03-19; просмотров: 841;