Распределенность и сосредоточенность параметров
В пространственно протяженных объектах, в частности включающих в себя непрерывные среды (газы, жидкости, твердые среды), когда время распространения физических, например колебательных явлений, оказывается соизмеримым с инерционными эффектами, адекватное описание процессов требует учета как временных, так и пространственных координат. Объекты такого рода, средством описания которых служат дифференциальные уравнения в частных производных, относятся к классу объектов с распределенными параметрами. С математической точки зрения объекты с распределенными параметрами представляют собой поле, существующее в пространственно-временном континууме, а переменные соответствующих моделей в общем случае суть функции времени и пространственных координат. Типичными примерами одномерных объектов с распределенными параметрами служат всевозможные «длинные линии»: проводные линии связи, длинные трубопроводы, линии электропередачи на большие расстояния. Примерами моделей двухмерного объекта с распределенными параметрами являются сечения различных трубопроводов, кабелей, проводов, где рассматриваются в плоскостях поля температур, плотностей и напряженностей. И, наконец, пространственное электромагнитное поле с его математической моделью – уравнениями Максвелла – представляет собой классический пример трехмерного объекта с распределенными параметрами.
Если пространственной протяженностью можно пренебречь и считать, что независимой переменной протекающих в нем процессов является только время, принято говорить об объекте с сосредоточенными параметрами. К числу таких объектов, которые описываются обыкновенными дифференциальными уравнениями, относится подавляющее большинство механизмов, машин, устройств, а также все системы, у которых расстояния между отдельными элементами практически не влияют на исследуемые свойства.
Математический аппарат, строго описывающий объекты с распределенными параметрами, существенно сложнее, чем аппарат объекта с сосредоточенными параметрами. Поэтому на практике всегда, где это возможно, прибегают к аппроксимации, т. е. заменяют распределенные параметры на сосредоточенные, например, разбивая пространство на небольшие элементы (подпространства) или делая корректировку сосредоточенных параметров.
Дата добавления: 2015-03-19; просмотров: 1623;