Основы генетики

 

Более одной пятой всех белков (а следовательно, и генов), содержащихся в организме каждого человека, существует в форме, различающейся у большин­ства членов популяции. Эта замечательная генетическая вариабельность, или полиморфизм, и обеспечивает многообразие особенностей человеческого организ­ма, таких, как рост, умственные способности, давление крови и т. д. Генетиче­ские различия также определяют способность каждого индивидуума реагиро­вать на неблагоприятные внешние воздействия, в том числе и на болезнетвор­ные. Все болезни человека можно рассматривать как результаты взаимодей­ствия его индивидуальной генетической структуры с окружающей средой. При некоторых заболеваниях этот генетический компонент отчетливо проявляется и без чрезвычайных внешних воздействий. Такие заболевания носят название генетических.

Молекулярная основа экспрессии гена. Вся наследственная информация пе­редается от родителей к детям посредством наследования дезоксирибонуклеиновой кислоты (ДНК). ДНК—это линейный полимер, состоящий из пуриновых и пиримидиновых оснований, последовательность которых полностью предопре­деляет последовательность аминокислот любого белка, синтезируемого организ­мом. Четыре типа оснований ДНК организованы в группы по три; каждый три­плет образует кодовое слово, или кодон, которое кодирует конкретную амино­кислоту. Ген представляет собой общую последовательность оснований в ДНК, определяющую последовательность аминокислот в полипептидной цепи одиноч­ной молекулы белка.

Генетическая информация, закодированная в ДНК хромосом, вначале транс­крибируется (переписывается)-на копию из рибонуклеиновой кислоты (РНК). Во время транскрипции рибонуклеотиды выстраиваются вдоль ДНК согласно правилам комплементарности оснований. Так, аденин ДНК образует пару с уридином РНК, цитозин — с гуанином, тимин — с аденином, а гуанин — с цитозином. Рибозные основания соединяются вместе посредством РНК-полимеразы. Полученный в результате РНК-транскрипт образует матрицу для трансляции в последовательность аминокислот белка. На рис. 57-1 приводятся кодовые слова ДНК и РНК для каждой аминокислоты белка.

Таким образом можно создавать информативные мутантные фенотипы и сразу же клонировать интересующий ген. Клонированные последовательности можно использовать для поиска последовательностей мРНК, а по ним определять сайты тканеспецифической экспрессии и временные характеристики экспрессии гена. Если данный участок кодирует белок, то по последовательностям нуклеи­новых кислот можно определить структуру пептидов, которые затем можно синтезировать и использовать для наработки антител, с помощью которых мож­но было бы определить тканеспецифическое и клеточноспецифическое размещение этого белка. Например, метод вставочного мутагенеза был использован для идентификации летальной эмбриональной мутации в гене коллагена типа I у мыши. Перечисленные средства позволяют создавать информативные фено­типы, исследовать молекулярную основу фенотипа и делать, заключения о соот­ветствующей нормальной биологии и физиологии.

Наличие подробных генных карт человека значительно упрощает поиски генетических вариаций, ассоциированных с предрасположенностью к заболе­ванию. Тот факт, что многие известные болезни ассоциируются с HLA-локусом, может объясняться либо тем, что гены предрасположенности к заболеваниям локализуются преимущественно в этой области, либо тем, что для высоко­полиморфных маркеров проще получать данные. По мере картирования посред­ством ПДРФ других частей генома могут проявиться дополнительные ассоциа­ции между заболеваниями и генетическими маркерами. Такие ассоциации будут способствовать идентификации тех генов, вариации которых предрасполагают к полигенцым или многофакторным заболеваниям.

Этические соображения. В настоящее время пренатальную диагностику осуществляют при болезнях различной степени тяжести, таких как дефицит сц-антитрипсина, фенилкетонурия, серповидно-клеточная анемия, мышечная дистрофия и семейная гиперхолестерннемия. В вопросе о допустимости искус­ственного прерывания беременности по поводу этих заболеваний мнения обще­ственности и отдельных лиц разделились. Развитие ген-замещающей терапии и других методов лечения неизлечимых ныне генетических заболеваний может выразиться в конечном итоге и в снижении частоты абортов.

Возможности ген-замещающей терапии затрагивают и другие этические проблемы. Соматическая ген-замещающая терапия связана с индивидуальной оценкой соотношения «риск—польза» для каждого больного. До тех пор пока не затрагивается ДНК половых клеток, людей обычно интересует лишь один серьезный этический вой-рос: наилучшим ли образом соответствует данный метод лечения интересам пациента? Опыт химиотерапии рака позволяет предполагать, что небольшой уровень ненамеренных повреждений ДНК половых клеток вос­принимается как нежелательный, но оправданный риск такой терапии, если. она приносит больному существенную пользу. Можно представить, что в будущем методы сайт-специфической рекомбинации позволят замещать мутантную ДНК в половых клетках нормальным материалом. Если кто-то раз и навсегда сможет корректировать в половых клетках человека мутации, приводящие к кистозному фиброзу, хорее Гентингтона или серповидно-клеточной анемии, и если лечение будет эффективным и безопасным, то будет ли общество рассматривать такую терапию как грубое вмешательство?

 








Дата добавления: 2015-03-17; просмотров: 589;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.005 сек.