Роль микоризы в жизни растений

О существовании микоризы, грибов живущих на корнях растений, известно уже довольно давно. Это явление – содружество, или симбиоз грибов и высших растений было открыто учеными в середине 19 века. Однако долгое время это оставалось просто известным фактом и только. Исследования последних десятилетий показали, какую громадную роль играет он в жизни растений.

Первые открытия были сделаны с помощью микроскопа, когда были обнаружены грибные нити, оплетающие корни растений. Микроскоп позволил увидеть и другой вид микоризы, который живет внутри корня, проникая и разрастаясь внутри корневых клеток. Первый вид был назван эктомикоризой, то-есть наружной микоризой. Он был найден на корнях почти всех древесных растений. Гифы гриба оплетают корень, образуя сплошной чехол. От этого чехла тянутся во все стороны тончайшие нити, пронизывая почву на десятки метров вокруг дерева. Те грибы, которые мы собираем в лесу, - плодовые тела эктомикоризы, в которых образуются споры. Их можно уподобить подводной части айсберга.

Тот, кто захочет развести съедобные грибы на своем участке, должен сначала обзавестись соответствующим деревом, затем на нем должна образоваться соответствующая ему микориза, а уж тогда, может быть, на ней вырастут плодовые тела.

Второй вид микоризы – эндомикориза, то-есть внутренняя микориза характерна главным образом для травянистых растений и в том числе для большинства культурных растений. Она гораздо более древнего происхождения.

На одном растении часто можно обнаружить оба вида микоризы.

Когда ученые нашли метод, позволяющий идентифицировать ДНК микоризных грибов, они были поражены их вездесущностью. Во-первых, оказалось, что около 90% всех видов растений имеют на своих корнях микоризу. Во-вторых, было установлено, что микориза существует так же давно, как существуют наземные растения. В ископаемых остатках первых наземных растений, возраст которых насчитывает около 400 миллионов лет, была найдена ДНК эндомикоризы. Эти первые растения, по всей видимости были подобны лишайникам, представляющим симбиоз водоросли и гриба. Водоросль за счет фотосинтеза создает органические вещества для питания гриба, а гриб играет роль корня, добывая минеральные элементы из того субстрата, на котором поселился лишайник.

Гриб сопутствовал растению на всем протяжении его наземной жизни. Даже, когда у растений появились корни, гриб не оставил его, помогая добывать элементы питания из почвы. В настоящее время только единицы растительных видов обрели независимость и сумели обходиться без микоризы. Это ряд видов из семейств маревых, капустных и амарантовых. Собственно, не совсем ясно, зачем нужна эта независимость, так как микориза во много раз увеличивает поглотительную способность корней.

Гифы гриба более, чем на порядок тоньше корневых волосков и поэтому способны проникать в тончайшие поры почвенных минералов, которые имеются даже в каждой отдельной песчинке. В одном кубическом сантиметре почвы, окружающей корни, общая протяженность нитей микоризы составляет от 20 до 40 метров. Нити грибов постепенно разрушают почвенные минералы, добывая из них минеральные элементы питания растений, которые не находятся в почвенном растворе, в том числе такой важный элемент как фосфор. Микориза играет очень существенную роль в снабжении растений фосфором, а также рядом микроэлементов, как например цинком и кобальтом.

Понятно, что растение не скупится и хорошо оплачивает эту службу, отдавая микоризе от 20 до 30% усвоенного им углерода в виде растворимых органических соединений

Дальнейшие исследования принесли еще более неожиданные и удивительные открытия относительно роли микоризы в растительном мире. Оказалось, что нити грибов, переплетаясь под землей, могут осуществлять связь одного растения с другим путем переноса и обмена органических и минеральных соединений. Совсем новым светом осветилось представление о растительных сообществах. Это не просто растущие рядом растения, но единый организм, связанный в единое целое подземной сетью многочисленных тончайших нитей. Было обнаружено нечто вроде взаимопомощи, когда более сильные растения подкармливают более слабых. Особенно нуждаются в этом растения с очень мелкими семенами. Микроскопический проросточек не смог бы выжить, если бы на первых порах его не взяла на свое попечение общая питательная сеть. Обмен между растениями был доказан опытами с радиоактивными изотопами.

Ученые открыли несколько видов растений, в том числе орхидеи, которые на протяжении всей своей жизни получают питание почти исключительно за счет микоризы, хотя обладают фотосинтетическим аппаратом и могли бы сами синтезировать органические вещества.

Микориза помогает растениям переносить стрессы, засуху, недостаток питания. Ученые считают, что без микоризы величественные тропические леса, леса из дубов, эвкалиптов, секвой не могли бы противостоять неизбежным в природе климатическим стрессам.

Однако в сообществе растений так же, как в сообществе людей, неизбежны конфликты. Микориза обладает определенной избирательностью и если в сообществе растений распространился определенный вид микоризы, то это не значит, что он будет одинаково благосклонен ко всем видам растений. Предполагают, что видовой состав растительных сообществ во многом зависит от свойств микоризы. Некоторые, не соответствующие ей виды, она может просто выжить, не снабжая их питанием. Растения этого неугодного вида постепенно слабеют и умирают.

Очень долго микоризные грибы не удавалось выращивать в искусственных условиях. Но с 1980-тых эти трудности были преодолены. Возникли фирмы, которые производят некоторые виды микоризы на продажу. Эктомикоризу производят для применения в лесных питомниках и установлено, что ее введение в зону корней значительно улучшает рост саженцев.

Нужны ли садоводам микоризные препараты? Ведь в естественных условиях микориза есть во всех почвах. Ее споры настолько малы и легки, что разносятся ветром на любые расстояния. В здоровом саду, где не злоупотребляют химикатами, микориза всегда присутствует в почве. Однако установлено, что высокие дозы минеральных удобрений и ядохимикаты, особенно фунгициды, подавляют развитие микоризы. Ее нет в почвах, лишенных плодородия в результате неумелого ведения хозяйства, в результате строительства, в почвах по той или иной причине лишенных гумуса.

Опыт садоводов США, где есть несколько коммерческих фирм, производящих микоризу для садоводов, говорит, что в экстремальных условиях внесение в почву микоризных препаратов дает очень хороший эффект. Садоводы, которые получили в пользование лишенные плодородия земли или находятся в районах с неблагоприятным климатом, на своем опыте убедились, что инокуляция микоризой дает им возможность иметь цветущий сад и в этих неблагоприятных условиях.

Обычно препарат микоризы имеет вид порошка, содержащего споры. Им обрабатывают семена или корни саженцев. Для декоративных и овощных растений используют препараты эндомикоризы, для древесных и кустарников – препараты эктомикоризы. Однако, чтобы получить хороший эффект от микоризы, надо выполнить важное условие – перейти на органический метод садоводства. Это значит применять органические удобрения, не перекапывать почву (только рыхлить), мульчировать, отказаться от применения высоких доз минеральных удобрений и фунгицидов.

43 вопрос:

Роль микроорганизмов в превращении веществ в природе.

Важнейший элемент, входящий в состав белков, а следовательно, имеющий исключительное значение для жизни — это азот. В живых существах, населяющих планету, содержится примерно 15—20 млрд. т азота, в почвах (в 30-сантиметровом слое) на каждом гектаре имеется в среднем 5—15 т азота.

В круговороте азота в природе с участием микроорганизмов различают следующие этапы: усвоение атмосферного азота, аммонификацию, нитрификацию, денитрификацию.

Усвоение азота из атмосферного воздуха азотфиксирующими бактериями. Среди микробов, усваивающих атмосферный азот, различают две группы — свободноживущих и клубеньковых.

Свободноживущие азотфиксаторы живут и фиксируют азот в почве независимо от растений. Основные виды этих микробов: Azotobacter chroococcum, Cl. pasteurianum. Азотобактер на площади в 1 га в течение года фиксирует от 20 до 50 кг газообразного азота, повышая плодородие почвы. Наиболее интенсивно этот процесс идет при хорошей аэрации почвы.

Клубеньковые бактерии — активные фиксаторы атмосферного азота в симбиозе с бобовыми растениями. Наличие бактерий в клубеньках бобовых растений установлено М. Ворониным. В чистой культуре эти микробы выделены Бейеринком в 1888 г. и названы Bact. radicicola (современное— род Rhizobium).

Аммонификация - это минерализация азотсодержащих органических веществ, протекающая под воздействием аммонифицирующих микробов, выделяющих протеолитические ферменты. Благодаря аммонификации представителей растительного и животного мира и их продуктов жизнедеятельности (мочевины, испражнений) почва обогащается азотом и другими соединениями. Одновременно с этим аммонифицирующие микробы выполняют огромную санитарную роль, очищая почву и гидросферу от разлагающегося органического субстрата. Основными представителями широко распространенных в природе аммонифицирующих микробов являются следующие. Микроорганизмы, разлагающие мочевину: Вас. probatus и Sporosarcina ureae

Подсчитано, что весь животный мир земного шара за сутки выделяет 150 тыс. т мочевины. За год это составляет более 50 млн. т мочевины, или 20 млн. т азота.

Спорообразующие аэробы — это Вас. mesentericus (картофельная бактерия), Вас. megatherium (капустная бактерия), Вас. subtilis (сенная палочка), Вас. mycoides (грибовидная бацилла). Не образующие спор аэробные аммонификаторы — это Е. coli, Proteus vulgaris, Ps. fluorescens.

Аммонификацию вызывают также актиномицеты, грибы, триходермы, живущие в почве.

Нитрификация — следующий за аммонификацией этап превращения азота микроорганизмами. Этот процесс представляет собой окисление аммиака, образующегося при разложении органических азотсодержащих соединений.

Денитрификация, протекающая под воздействием микробов, представляет собой восстановление нитратов с образованием в качестве • конечного продукта — молекулярного азота, возвращающегося из почвы в атмосферу. Вызывается этот процесс денитрифицирующими бактериями. Наиболее распространенные из них в природе: Tiolacillus denitrifi-cans — палочка, не образующая спор, факультативный анаэроб; Ps. fluo-rescens — подвижная палочка, выделяет зеленоватый пигмент, быстро разлагает нитраты; Ps. aeruginosa — бактерия сходна с предыдущей; Ps. Stutzeri — небольшая палочка, образующая цепочки, разлагает нитраты в анаэробных условиях.

Роль микробов в круговороте углерода. Важнейшим органогеном, входящим в состав микробов, растений, животных, является углерод. В клеточном веществе этот элемент составляет около 50% сухого вещества.

Автотрофные микробы для превращения углекислоты, не имеющей энергетических свойств, в органические энергетические соединения нуждаются в тепловых источниках, которыми для них служит солнечная энергия или химическая энергия окисления минеральных веществ. Усвоение углерода с использованием солнечной энергии называется фотосинтезом, а с использованием химической энергии — химиосинтезом. К фотоавтотрофам относят цветные бактерии: зеленые содержат в цитоплазме хлорофилл, а пурпурные красный или коричневый пигмент. Наиболее значимы из них нитрифицирующие бактерии, окисляющие аммиак в соли азотистой кислоты. Источником углерода для синтеза клеточного вещества у них служит углекислота. Тионовые бактерии относятся к химио-автотрофам, они окисляют серу до серной кислоты. Таким образом, автотрофные микробы, используя солнечную или химическую энергию, превращают углекислоту в органическое вещество. Основной процесс, возвращающий углекислоту в атмосферу, — разложение органических соединений под влиянием микроорганизмов. Этот процесс разложения органических безазотистых соединений называется брожением. брожение (fermentatio) - ферментативное расщепление органических веществ, преимущественно углеводов на более простые соединения; большинство типов Б. протекает в анаэробных условиях в клетках всех организмов и сопровождается освобождением энергии, используемой для поддержания жизнедеятельности. Природа конечного продукта зависит от вида микроорганизма, участвующего в ферментативном превращении субстрата. Приведем только имеющее наибольшее значение для круговорота углерода.

Брожение клетчатки. В природе огромные запасы углерода сосредоточены в клетчатке (целлюлозе) растений. После их гибели идет разложение клетчатки с высвобождением углерода в виде углекислоты, возвращающейся в атмосферу. Наиболее интенсивно клетчатка разлагается целлюлозными микробами в пищеварительном аппарате травоядных животных. Различают анаэробное и аэробное брожение клетчатки.

В ветеринарии водородное и метановое брожение клетчатки в преджелудках крупного рогатого скота имеет особое значение. При поедании этими животными большого количества зеленой массы бобовых растений (люцерны, клевера), особенно влажной от росы или дождя, в их преджелудках происходит весьма интенсивное брожение с образованием большого количества водорода, метана, углекислоты. Эти газы вызывают острое вздутие рубца — тимпанию. Интенсивно разлагают клетчатку в навозе в анаэробных условиях термофильный микроб Cl. termocellum, согревая его до 60—65oС.

Пропионовокислое брожение осуществляется бактериями семейства Propionibacterium грамположительные неподвижные палочки, обычно полиморфные, образующие булавовидные формы с одним закругленным концом, другим – конусообразным. Спор не образуют. Пропионовокислые бактерии в больших количествах обнаружываются в пищеварительном тракте (в рубце) жвачных животных.

3С6Н12О6=4СН3СН2СООН+2СН3СООН+2СО2+2Н2О

Пропионовокислые бактерии способны сбраживать молочную кислоту, образовавшуюся в результате брожения под действием других бактерий, превращая ее в пропионовую и уксусную кислоты:

3СН3СН2ОНСООН=2СН3СН2СООН+СН3СООН+Н2О+СО2

Аэробное брожение клетчатки наиболее интенсивно происходит под влиянием следующих трех родов микроорганизмов, широко распространенных в природе: Cytophaga — подвижных длинных палочек с заостренными концами, Celvibrio — изогнутых палочек, Celfacicula — коротких палочек. В расщеплении целлюлозы принимают участие миксобактерии, относящиеся к порядку Myxobacteriales: семейство Myxococcaceae( род Myxococcus), семейство Archangiaceae( род Archangium), семейство Polyangiaceae( род Polyandium), широко распространенные в почвах разных зон. В аэробных условиях клетчатку разлагают также актиномицеты и плесневые грибы, обитающие в относительно бедных почвах. К актиномицетам относятся представители родов Streptomyces, Streptosporangium, Micromonospora, к грибам – представители родов Fusarium, Dematium, Chaetomium, Trichoderma, Vertillium, Aspergillus, Penicillium, Botrytis, Rhizoctonia, Myrothecium. . В разрушении целлюлозы участвуют и хитридиомицеты, среди которых много паразитов. Целлюлозные микроорганизмы выполняют огромную санитарную роль, разлагая клетчатку отмерших растений, благодаря чему в почве накапливается гумус, повышающий ее плодородие.

Для ветеринарии среди грибов, разрушающих клетчатку, особое значение имеет Stachybotris alternans, вызывающий тяжелое заболевание животных.

Весьма вредоносный разрушитель одревесневшей клетчатки (древесины) — домовой гриб Merulium lacrymans. Этот гриб, разрастаясь в древесине, приводит ее в полную негодность (трухлое состояние), разрушая деревянные постройки, особенно потолки и полы в животноводческих помещениях.

Анаэробное разложение целлюлозы. Большинство представителей анаэробных целлюлозоразлагающих бактерий, найденных в природе, относятся к семейству Bacillaceae, роду Clostridium. Эти бактерии обитают в почвах, компостах, навозе, речном иле и сточных водах. Они устойчивы к кислотности и распрастранены не только в нейтральных, но и в кислых почвах. Типичный представитель рода, разлагающий целлюлозу при температуре 30 -40 С, - Clostridium omelianskii, впервые выделенный известным микробиологом В.Л. Омелянским в 1902 г. Этот микроорганизм имеет палочковидную форму (4-8*0,3-0,5 мкм), подвижен, образует толстые споры в клетке, поэтому спорообразующая клетка сильно раздувается и становится похожей на барабанную палочку.

Быстрый поиск по Банку Рефератов: | Описание работы | Похожие работы

Смотрите также: Биогеофизические круговороты веществ в природе (Реферат, 2000) и Предмет и задачи микробиологии (Лекция, 1999)

Разлагать целлюлозу может мезофильный вид(температурный оптимум для роста 30 -40 С) – Cl. Cellobioparum и термофильный вид(температурный оптимум составляет 60 – 75 С) - Cl. termocellum. Эти бактерии хорошо используют целлюлозу, но на обычных средах, содержащих простые сахара, они развиваются слабо. Они плохо переносят даже несколько повышенные концентрации сахаров.

Следует указать, что в рубце жвачных животных находятся специфические облигатные анаэробные целлюлозоразлагающие бактерии. Они вызывают разложение целлюлозы кормов до глюкозы, которая затем сбраживается с образованием органических кислот( уксусной, пропионовой, масляной, молочной, муравьиной, янтарной и др.), спиртов и газов(СО2 и Н2). Разложение целлюлозы в рубце животных осуществляют кокковидные и палочковидные бактерии: Ruminococcus flavefaciens, Ruminococcus albus, Bacteroides succinogenes, Butyrovibrio fibrisolvens, Ruminobacter parvum. Бактерии рубца имеют большое значение в питании жвачных животных.

При анаэробном распаде целлюлозы первоначальный продукт ее гидролиза – глюкоза в дальнейшем подвергается сбраживанию, в результате чего возникает много органических веществ, состав которых различается у отдельных культур микроорганизмов:

Мезофилы:








Дата добавления: 2015-01-13; просмотров: 4974;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.01 сек.