Решение. Расстояние от точки до плоскости представляет собой длину перпендикуляра, опущенного из точки на плоскость

Расстояние от точки до плоскости представляет собой длину перпендикуляра, опущенного из точки на плоскость, и определяется формулой

(3.10)

Для плоскости координаты нормального вектора определяются равенствами , , . Следовательно, .

6) Составить канонические уравнения прямой, проходящей через точки и .








Дата добавления: 2014-12-07; просмотров: 804;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.003 сек.