Условная вероятность. Теорема умножения вероятностей.

Во многих задачах приходится находить вероятность совмещения событий А и В, если известны вероятности событий А и В.

Рассмотрим следующий пример. Пусть брошены две монеты. Найдем вероятность появления двух гербов. Мы имеем 4 равновероятных попарно несовместных исхода, образующих полную группу:

  1-я монета 2-я монета
1-й исход герб герб
2-й исход герб надпись
3-й исход надпись герб
4-й исход надпись надпись


Таким образом, P(герб,герб)=1/4.

Пусть теперь нам стало известно, что на первой монете выпал герб. Как изменится после этого вероятность того, что герб появится на обеих монетах? Так как на первой монете выпал герб, то теперь полная группа состоит из двух равновероятных несовместных исходов:

  1-я монета 2-я монета
1-й исход герб герб
2-й исход герб надпись


При этом только один из исходов благоприятствует событию (герб, герб). Поэтому при сделанных предположениях Р(герб,герб)=1/2. Обозначим через А появление двух гербов, а через В — появление герба на первой монете. Мы видим, что вероятность события Аизменилась, когда стало известно, что событие B произошло.

Новую вероятность события А, в предположении, что произошло событие B, будем обозначать PB(А).

Таким образом, Р(A)=1/4; PB(А)=1/2

Теорема умножения. Вероятность совмещения событий А и В равна произведению вероятности одного из них на условную вероятность другого, вычисленную в предположении, что первое событие осуществилось, т. е.

P(AB)=P(A)PA(B) (4)

 

Доказательство. Докажем справедливость соотношения (4), опираясь на классическое определение вероятности. Пусть возможные исходы Е1, Е2, ..., ЕN данного опыта образуют полную группу равновероятных попарно несовместных событий, из которых событию Aблагоприятствуют M исходов, и пусть из этих M исходов L исходов благоприятствуют событию B. Очевидно, что совмещению событий A и Bблагоприятствуют L из N возможных результатов испытания. Это дает

; ;


Таким образом,


Поменяв местами A и B, аналогично получим

(5)


Из формул (4) и (5) имеем

(6)


Теорема умножения легко обобщается на любое , конечное число событий. Так, например, в случае трех событий A1, A2, A3 имеем *


В общем случае

(7)


Введем теперь следующее определение.
Два события A и B называются независимыми, если предположение о том, что произошло одно из них, не изменяет вероятность другого, т. е. если

и (8)

 

Из соотношения (6) вытекает, что из двух равенств (8) одно является следствием другого.

Пусть, например, событие A — появление герба при однократном брссании монеты, а событие B — появление карты бубновой масти при вынимании карты из колоды. Очевидно, что события A и B независимы.

В случае независимости событий A к B формула (4) примет более простой вид:

(9)


т. е. вероятность совмещения двух независимых событий равна произведению вероятностей этих событий.

События А1, А2, ..., Аn называются независимыми в совокупности, если вероятность наступления каждого из них не меняет своего значения после того, как одно или несколько из остальных событий осуществились.

Исходя из этого определения, в случае независимости событий А1, А2, ..., Аn между собой в совокупности на основании формулы (7) имеем

(10)

 

Пример 1. Какова вероятность того, что при десятикратном бросании монеты герб выпадет 10 раз ?

Решение: Пусть событие Ai — появление герба при i-м бросании. Искомая вероятность есть вероятность совмещения всех событий Ai(i=1,2,3,...,10), а так как они, очевидно, независимы в совокупности, то применяя формулу (10), имеем


Но P(Ai)=1/2 для любого i; поэтому

 


Пример 2. Рабочий обслуживает три станка, работающих независимо друг от друга. Вероятность того, что в течение часа станок не потребует внимания рабочего, для первого станка равна 0,9, для второго — 0,8, для третьего — 0,7. Найти: 1) вероятность р того, что в течение часа ни один из трех станков не потребует внимания рабочего; 2) вероятность того, что в течение часа по крайней мере один из станков не потребует внимания рабочего.

Решение:
1) Искомую вероятность р находим по формуле (10):

 


2) Вероятность того, что в течение часа станок потребует внимания рабочего для первого станка равна 1—0,9=0,1, для второго и для третьего станков она соответственно равна 1—0,8=0,2 и 1—0,7=0,3. Тогда вероятность того, что в течение часа все три станка потребуют внимания рабочего, на основании формулы (10) составляет


Событие A, заключающееся в том, что в течение часа все три станка потребуют внимания рабочего, противоположно событию , состоящему в том, что по крайней мере один из станков не потребует внимания рабочего. Поэтому по формуле (3) получаем

 

 

Пример 3. Из урны, содержащей 3 белых и 7 черных шаров, вынимают два шара. Какова вероятность того, что оба шара окажутся белыми ?

Решение: Эта задача уже была решена в п. 3 с помощью классического определения вероятности. Решим ее, применяя формулу (5). Извлечение двух шаров равносильно последовательному их извлечению. Обозначим через А появление белого шара при первом извлечении, а через В — при втором. Событие, состоящее в появлении двух белых шаров, является совмещением событий А и В. По формуле (5) имеем


Но Р(А)=3/10; РA(В)=2/9, поскольку после того, как был вынут первый белый шар, в урне осталось 9 шаров, из которых 2 белых. Следовательно,

 








Дата добавления: 2014-11-29; просмотров: 1135;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.01 сек.