ГИПСОВЫЕ ВЯЖУЩИЕ ВЕЩЕСТВА

Гипсовые вяжущие — группа воздушных вяжущих веществ, в за­твердевшем состоянии состоящих из двуводного сульфата кальция (CaSO4 • 2Н2О), включает в себя собственно гипсовые вяжущие (далее для краткости — гипс) и ангидритовые вяжущие (ангидритовый цемент и эстоихгипс).

Таким способом производится основное количество гипса; обычно для этого используют гипсоварочные котлы. Гипс (3-модификации далее для краткости будем называть просто «гипс».

Доступность сырья, простота технологии и низкая энергоем­кость производства (в 4...5 раз меньше, чем для получения порт­ландцемента) делают гипс дешевым и перспективным вяжущим.

Химизм твердения гипса заключается в переходе полуводного суль­фата кальция при затворении его водой в двуводный:

Внешне это выражается в превращении пластичного теста в твердую камнеподобную массу.

Причина такого поведения гипса заключается в том, что полувод­ный гипс растворяется в воде почти в 4 раза лучше, чем двуводный (растворимость соответственно 8 и 2 г/л в пересчете на CaSO4). При смешивании с водой полуводный гипс растворяется до образования насыщенного раствора и тут же гидратируется, образуя двугидрат, по отношению к которому раствор оказывается пересыщенным. Кристал­лы двуводного гипса выпадают в осадок, а полуводный вновь начинает растворяться и т. д. (рис. 8.1). В дальнейшем процесс может идти по пути непосредственной гидратации гипса в твердой фазе.

Конечной стадией твердения, заканчивающегося через 1...2 ч, является образование кристаллического сростка из достаточно крупных кристаллов двуводного гипса. Часть объема этого сростка занимает вода (точнее, насыщенный раствор CaSO4 ■ 2Н2О в воде), не вступив­шая во взаимодействие с гипсом (о причинах присутствия этой воды чуть ниже). Если высушить затвердевший гипс, то прочность его заметно (в 1,5...2 раза) повысится за счет дополнительной кристалли-

зации гипса из указанного выше раствора по местам контактов уже сформированных кристаллов. При повторном увлажнении процесс протекает в обратном порядке, и гипс теряет часть прочности.

Причина наличия свободной воды в затвердевшем гипсе объясня­ется тем, что для гидратации гипса нужно около 20 % воды от его массы, а для образования пластичного гипсового теста — 50...60 % воды. (Последний показатель называют водопотребностью, методика определения которой для гипса описана в лабораторной работе № 6.) Очевидно, что после затвердевания такого теста (т. е. после завершения гидратации) в нем останется 30...40 % (от массы гипса) свободной воды, что составляет около половины объема материала. Этот объем воды образует поры, временно занятые водой, а пористость материала, как известно, определяет многие его свойства (плотность, прочность, теплопроводность и др.).

Разница между количеством воды, необходимым для твердения вяжущего и для получения из него удобоформуемого теста,— основная проблема технологии материалов на основе минеральных вяжущих.

Для гипса проблема снижения водопотребности и, соответственно, снижения пористости и повышения прочности была решена путем получения гипса термообработкой не на воздухе, а в среде насыщенного пара (в автоклаве при давлении 0,3...0,4 МПа) или в растворах солей (СаС12 • MgCl2 и др.). В этих условиях образуется другая кристалличе­ская модификация полуводного гипса — ос-гипс, имеющая водопот-ребность 35...40 %.

Гипс ос-модификации называют высокопрочным гипсом, так как благодаря пониженной водопотребности он образует при твердении менее пористый и более прочный камень, чем обычный гипс р-моди-фикации. Из-за трудностей производства высокопрочный гипс не нашел широкого применения в строительстве.

Технические свойства гипса. Истинная плотность полуводного гипса — 2,65...2,75 г/см3 (двуводного — 2,32 г/см'); насыпная плотность по­луводного гипса — 800... 1100 кг/м3.

По срокам схватывания, определяемым на приборе Вика (методика определения описана в лабораторной работе), гипс делят на три группы (А, Б, В):

Замедляют схватывание гипса добавкой столярного клея, сульфит-носпиртовой барды (ССБ), технических лигносульфонатов (ЛСТ),

кератинового замедлителя, а также борной кислоты, буры и полимер­ных дисперсий (например, ПВА).

Марку гипса определяют испытанием на сжатие и изгиб стандар­тных образцов-балочек 4 х 4 х 16 см спустя 2 ч после их формования (о методике испытаний см. лабораторную работу). За это время гидра­тация и кристаллизация гипса заканчивается.

Установлено 12 марок гипса по прочности от Г-2 до Г-25 (цифра показывает нижний предел прочности при сжатии данной марки гипса):

В строительстве используется в основном гипс марок от Г-4 до Г-7.

По тонкости помола, определяемой максимальным остатком пробы гипса при просеивании на сите с отверстиями 0,2 мм, гипсовые вяжущие делят на три группы:

Маркируют гипсовые вяжущие по всем трем показателям: скорости схватывания, тонкости помола и прочности. Например, гипсовое вяжущее Г-7АП — быстротвердеющее (А), среднего помола (II), проч­ность на сжатие не менее 7 МПа.

Плотность затвердевшего гипсового камня низкая (1200... 1500 кг/м3) из-за значительной пористости (60...30 % соответственно).

Гипсовое вяжущее — одно из немногих вяжущих, расширяю­щихся при твердении: увеличение в объеме достигает 0,2 %. Эта особенность гипсовых вяжущих позволяет применять их без запол­нителей, не боясь растрескивания от усадки.

При увлажнении затвердевший гипс не только существенно (в 2...3 раза) снижает прочность, но и проявляет нежелательное свойство — ползучесть — медленное необратимое изменение размеров и формы под нагрузкой. Характер водной среды во влажном гипсе — нейтраль­ный (рН = 6,5...7,5), и она содержит ионы Са+2 и SO 24, поэтому стальная арматура в гипсе корродирует. Увлажнению гипса способст­вует его гигроскопичность — способность поглощать влагу из воздуха.

затворять раствором хлорида иди сульфата магния. В этом случае гидратация протекает значительно быстрее

Сроки схватывания каустического машезша -зашил i ui 1М.ш^и.; ры обжига и тонкости помола и обычно находятся в пределах: начало — не ранее 20 мин; конец — не позднее 6 ч. Твердение начинается интенсивно, и через сутки вяжущее достигает прочности 10...15 МПа; через 28 суток воздушного твердения прочность составляет 30...50 МПа. В жестких смесях прочность может достигать 100 МПа.

У каустического доломита сроки схватывания больше, а проч­ностные показатели ниже (например, R^ через 28 сут составляет

10...30 МПа).

Магнезиальные вяжущие в XIX — начале XX в. применялись для устройства бесшовных монолитных, так называемых ксилолитовых полов. Ксилолит (от гр. xelon — древесина) — бетон на магнезиальном вяжущем с наполнителем из древесных опилок. Такие полы циклюют­ся, их можно натирать мастиками, по теплоусвоению они близки к паркетным полам. Возможно изготовление ксилолитовых плиток для полов. Хотя серьезных перспектив у магнезиальных вяжущих из-за дефицитности сырья (магнезиты необходимы для получения огнеупо­ров) нет, но они вновь начали применяться в отечественном строи­тельстве.

8.5. РАСТВОРИМОЕ СТЕКЛО И КИСЛОТОУПОРНЫЙ ЦЕМЕНТ

соответствующих щелочных гидроксидов. В этих условиях (рН = =12...13) раствор кремневой кислоты относительно стабилен. Жидкое стекло имеет повышенную вязкость из-за того, что кремнекислота в нем находится в полимеризованном виде. При обезвоживании (испа­рении или отсасывании воды) или при нейтрализации щелочей (на­пример, углекислым газом воздуха) раствор теряет стабильность и переходит в гель, уплотняющийся со временем и приобретающий значительную прочность. Так, растворимое стекло проявляет вяжущие свойства. В обычных условиях этот процесс может идти очень долго, поэтому используют добавки — ускорители твердения.

Жидкое стекло применяют для изготовления кислотоупорных за­мазок и бетонов, а также как связующее в силикатных красках (только калиевое стекло).

Кислотоупорный цемент изготовляют из тонко измельченной смеси кислотоупорного наполнителя (кварца, диабаза, андезита и т. п.) и ускорителя твердения — кремнефтористого натрия Na2SiF6. Название «цемент» для такого порошка имеет условный характер, так как сам он вяжущими свойствами не обладает и при смешивании с водой не твердеет. Вяжущим веществом в таких цементах является жидкое стекло, которым этот «цемент» и затворяют.

Процесс твердения кислотоупорного цемента протекает по схеме полного разложения силиката натрия и нейтрализации гидроксида натрия:

Образующийся гель кремневой кислоты является вяжущим компо­нентом, а плохо растворимый фторид натрия и порошок кислотоупор­ной породы (кварца и т. п.) служат микронаполнителями образую­щегося цементного камня. Ориентировочное количество Na2SiF6 от массы растворимого стекла (т. е. сухого вещества в составе жидкого стекла) в кислотоупорных растворах и бетонах должно быть в пределах 10...15 %.

Сроки схватывания кислотоупорного цемента: начало — не ранее 20 мин., конец — не позднее 8 ч. У этого цемента нормируется предел прочности при растяжении после 28 сут твердения — не менее 2,0 МПа. Прочность при сжатии бетонов на кислотоупорном цементе составляет 20...60 МПа.

Основным достоинством и отличием кислотоупорного цемента от других неорганических вяжущих является способность работать в условиях действия большинства кислот (за исключением плави­ковой и фосфорной).

Более того, для уплотнения и упрочнения бетонов или растворов на кислотоупорном цементе их обрабатывают соляной или серной кислотами {«кислуют»). При этом нейтрализуются остатки щелоч­ных гидроксидов и уплотняется гель кремнекислоты.

Кислотостойкость — сохранение массы при испытании в кислоте — не менее 93 %.

Однако при длительном воздействии воды, пара и растворов ще­лочей бетоны и растворы на жидком стекле теряют прочность.

8.6. ВОЗДУШНАЯ ИЗВЕСТЬ

Известь известна человечеству не одно тысячелетие и все это время активно используется им в строительстве и многих других отраслях. Это объясняется доступностью сырья, простотой технологии и доста­точно хорошими свойствами извести.

Сырьем для получения извести служат широко распространенные осадочные горные породы: известняки, мел, доломиты, состоящие преимущественно из карбоната кальция (СаСО3). Если куски таких пород прокалить на огне (рис. 8.2), то карбонат кальция перейдет в оксид кальция:

После прокаливания куски, теряя с углекислым газом 44 % своей массы, становятся легкими и пористыми. При смачивании водой они бурно реагируют с ней, превращаясь в тонкий порошок, а при избытке воды в пластичное тесто. Этот процесс, сопровождающийся сильным выделением теплоты и разогревом воды вплоть до кипения, называют гашением извести. Образующееся при избытке взятой воды пластичное тесто используют в качестве вяжущего. При испарении воды тесто загустевает и переходит в камневидное состояние (рис. 8.2). Недостаток извести — медленное твердение: процесс набора прочности твердею­щей известью растягивается на годы и десятилетия. В реальные сроки строительства прочность- затвердевшей извести, как правило, не пре­вышает 0,5...2 МПа.

Производство. Сырье — карбонатные породы (известняки, мел, доломиты), содержащие не более 6...8 % глинистых примесей, обжи­гают в шахтных или вращающихся печах при температуре 1000...1200° С. В процессе обжига СаСО3 и MgCO3, содержащиеся в исходной породе, разлагаются на оксиды кальция СаО и магния MgO и углекислый газ. Неравномерность обжига может привести к образованию в извести недожога и пережога.

Недожог (неразложившийся СаСО3), получающийся при слишком низкой температуре обжига, снижает качество извести, так как не гасится и не обладает вяжущими свойствами.

Пережог образуется при слишком высокой температуре обжига в результате сплавления СаО с примесями кремнезема и глинозема. Зерна пережога медленно гасятся и могут вызвать растрескивание и разрушение уже затвердевшего материала.

Куски обожженной извести — комовая известь — обычно подвер­гают гашению водой:

Выделяющаяся при гашении теплота резко повышает температуру извести и воды, которая может даже закипеть (поэтому негашеную известь называют кжелкой)*.

При гашении куски комовой извести увеличиваются в объеме и распадаются на мельчайшие (до 0,001 мм) частицы.

В зависимости от количества взятой для гашения воды получают: гидратную известь — пушонку (50...70 % воды от массы извести, т. е. в количестве, необходимом для протекания реакции гидратации — про­цесса гашения); известковое тесто (воды в 3...4 раза больше, чем извести), известковое молоко (количество воды превышает теоретиче­ски необходимое в 8... 10 раз).

По виду поставляемого на строительство продукта воздушную известь подразделяют на негашеную комовую (кипелку), негашеную

Теплоты, выделяющейся при гашении 1 кг извести (1160 кДж), достаточно, чтобы нагреть до кипения 3,5...4 л воды.

порошкообразную (молотую кипелку) и гидратную (гашеную, или

пушонку).

Негашеная комовая известь представляет собой мелкопористые куски размером 5... 10 см, получаемые обжигом известняка. В зависи­мости от содержания, активных СаО + MgO и количества негасящихся зерен комовую известь разделяют на три сорта.

По скорости гашения комовая известь бывает:

Негашеную порошкообразную известь получают помолом комовой в шаровых мельницах в тонкий порошок. Часто в известь во время помола вводят активные добавки (гранулированные доменные шлаки, золы ТЭС и т. п.) в количестве 10...20 % от массы извести. Порошко­образная известь, как и комовая, делится на три сорта.

Преимущество порошкообразной извести перед комовой состоит в том, что при затворении водой она ведет себя подобно гипсовым вяжущим: сначала образует пластичное тесто, а через 20...40 мин схватывается. Это объясняется тем, что веда затворения, образующая тесто, частично расходуется на гашение извести. При этом известковое тесто густеет и теряет пластичность. Благодаря меньшему количеству свободной воды материалы на основе порошкообразной извести менее пористые и более прочные. Кроме того, известь при гашении разогре­вается, что облегчает работу с ней в холодное время.

При использовании порошкообразной извести воды берут 100...150 % от массы извести в зависимости от качества извести и количества активных добавок в ней. Определяют количество воды опытным путем. Гидратная известь (пушонка) тончайший белый порошок, получа­емый гашением извести, обычно в заводских условиях, небольшим количеством воды (несколько выше теоретически необходимого). При гашении в пушонку известь увеличивается в объеме в 2...2,5 раза. Несып­ная плотность пушонки — 400...450 кг/м3; влажность — не более 5 %.

Гашение известиможно производить как на строительстве объекта, так и централизованно. В последнем случае гашение совмещается с мокрым помолом непогасившихся частиц, что увеличивает выход извести и улучшает ее качество.

На строительстве известь гасят в гасильных ящиках (творилах). В ящик загружают комовую известь не более чем на 1/3 его высоты (толщина слоя обычно около 100 мм), поскольку при гашении известь увеличивается в объеме в 2,5...3,5 раза. Быстрогасящуюся известь заливают сразу большим количеством воды, чтобы не допустить пере-гоева и кипения воды, медленногасящуюся — небольшими порциями,

следя за тем, чтобы известь не охладилась. Из 1 кг извести взависимости от ее качества получается 2...2,5 л известкового теста. Этот показатель называют «выход теста».

Воздушная известь — единственное вяжущее, которое превра­щается втонкий порошок не только размолом, но и путем гашения водой.

Колоссальная удельная поверхность частиц Са(ОН)2 и их гидро-фильность обусловливает большую водоудерживающую способность и пластичность известкового теста. После отстаивания известковое тесто содержит около 50 % твердых частиц и 50 % воды. Каждая частица окружена тонким слоем адсорбированной воды, играющей роль свое­образной смазки, что обеспечивает высокую пластичность известко­вого теста и смесей с использованием извести.

По окончании гашения жидкое известковое тесто через сетку сливают визвестехран'илище, где его выдерживают до тех пор, пока полностью не завершится процесс гашения (обычно не менее двух недель). Известковое тесто с размером непогасившихся зерен менее 0,6 мм можно применять сразу. Крупные непогасившиеся зерна опасны тем, что среди них могут быть пережженные зерна (пережог).

Содержание воды в известковом тесте не нормируется. Обычно в хорошо выдержанном тесте соотношение воды и извести около 1:1.

Твердение.Известковое тесто состоит из насыщенного водного раствора Са(ОН)2 и мельчайших нерастворившихся частиц извести. По мере испарения из него воды образуется пересыщенный раствор Са(ОН)2, из которого выпадают кристаллы, скрепляющие отдельные частицы вединый монолит. При этом происходит усадка твердеющей системы, которая в определенных условиях (например, при твердении известковой смеси на жестком основании — штукатурный слой) может вызвать растрескивание материала. Поэтому известь всегда применяют с заполнителями (например, известково-песчаные растворы) или в смеси с другими вяжущими для придания материалу пластичности.

Известковое тесто, защищенное от высыхания, неограниченно долго сохраняет пластичность, т. е. у извести отсутствует процесс схватывания. Затвердевшее известковое тесто при увлажнении вновь переходит в пластичное состояние (известь — неводостойкий материал).

Однако при длительном твердении (десятилетия) известь приобре­тает довольно высокую прочность и относительную водостойкость (например, в кладке старых зданий). Это объясняется тем, что на

воздухе известь реагирует с углекислым газом, образуя нерастворимый в воде и довольно прочный карбонат кальция, т. е. как бы обратно переходит в известняк:

Процесс этот очень длительный, и полной карбонизации извести практически не происходит.

Существует мнение, что при длительном контакте извести с квар­цевым песком в присутствии влаги между этими компонентами про­исходит взаимодействие с образованием контактного слоя из гидро­силикатов. Это так же повышает прочность и водостойкость бетонов и кирпичной кладки на извести, имеющих возраст более 200...300 лет.

Применение, транспортирование, хранение. Воздушную известь применяют для приготовления кладочных и штукатурных растворов как самостоятельное вяжущее, так и в смеси с цементом; при произ­водстве силикатного кирпича и силикатобетонных изделий; для полу­чения смешанных вяжущих (известково-шлаковых, известково-зольных и др.) и для красок.

Негашеную известь, особенно порошкообразную, при транспорти­ровании и хранении предохраняют от увлажнения. Порошкообразная известь-кипелка гасится даже влагой, содержащейся в воздухе. Мак­симальный срок хранения молотой извести в бумажных мешках 25 сут, в герметичной таре (металлические барабаны) — не ограничен.

Комовую известь транспортируют навалом в закрытых вагонах и автомашинах, порошкообразную — в бумажных мешках, а также в специальных автоцистернах. В таких же цистернах перевозят пушонку и известковое тесто.

Хранят комовую известь в сараях с деревянным полом, поднятым над землей на 30 см. Недопустимо попадание на известь воды, так как это может вызвать ее разогрев и пожар. На складах извести тушение пожара водой запрещается.

Техника безопасности. Воздушная известь всех видов — довольно сильная щелочь. Поэтому при работе с ней необходимо принимать меры, предотвращающие контакт извести с открытыми участками кожи и особенно дыхательных путей и глаз. Особенно опасна негашеная известь. Концентрация известковой пыли в воздухе не должна превы-. шать 2 мг/м3.

Молотую известь необходимо предохранять от попадания воды, так как в этом случае из-за бурного выделения теплоты и вскипания воды возможен выброс порошка извести.

Во время погрузочно-разгрузочных работ, а также во время гашения извести рабочие должны быть в резиновой обуви, защитной одежде, рукавицах, плотно прилагающем головном уборе, защитных очках и респираторах.








Дата добавления: 2014-12-05; просмотров: 4240;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.032 сек.