Закон сохранения момента импульса. Работа при вращении тела. Кинетическая энергия вращательного движения.

Закон сохранения момента импульса для замкнутой системы
Работа при вращении тела: ΔA = MzΔφ, где Δφ - угол поворота тела; Mz - момент силы относительно оси
Кинетическая энергия тела, вращающегося вокруг неподвижной оси: , где J– момент инерции тела относительно оси, ω - его угловая скорость Кинетическая энергия тела, катящегося по плоскости без скольжения: где m– масса тела; vc - скорость центра масс тела; J – момент инерции тела относительно оси, проходящей через центр масс; ω –угловая скорость тела

 

Пример 8.На скамье Жуковского сидит человек и держит в вытянутых руках гири массой m =10 кг каждая. Расстояние от каждой гири до оси вращения скамьи l1 = 50 см. Скамья вращается с частотой n1 = 1,0 с-1. Как изменится частота вращения скамьи и какую работу A произведет человек, если он сожмет руки так, что расстояние от каждой гири до оси уменьшится до l2 = 20 см. Суммарный момент инерции человека и скамьи относительно оси вращения J =2,5 кг·м2. Ось вращения проходит через центр масс человека и скамьи.

Условие:

m = 10 кг;

l1=50 см = 0,5 м;

n1 =1,0 с-1;

l2 =20 см =0,2 м;

J = 2,5 кг·м2.

n2 - ? А - ?

Решение. Частота вращения скамьи Жуковского изменится в результате действий, производимых человеком при сближении гирь. В системе тел скамья – человек – гири все силы, кроме сил реакции опоры, являются внутренними и не изменяют момента импульса системы. Однако моменты сил реакции опоры относительно вертикальной оси равны нулю. (Для скамьи Жуковского силы трения в оси можно считать отсутствующими.) Следовательно, момент импульса этой системы остается постоянным:

; , (1)

где J1ω1, J2ω2 - моменты импульса системы соответственно до и после сближения гирь.

Перепишем векторное уравнение (1) в скалярном виде:

J1ω1 = J2ω2. (2)

До сближения гирь момент инерции всей системы: J1 = J0 + 2ml12.

После сближения: J2 = J0 + 2ml22,

где m - масса каждой гири.

Выражая угловую скорость через частоту вращения по формуле ω = 2πn и подставляя ее в уравнение (1) получаем

(J0 + 2ml12)n1 = (J0 + 2ml22)n2.

Откуда 2,3 c-1.

 

Все внешние силы не создают вращающего момента относительно оси и, следовательно, не совершают работы. Поэтому изменение кинетической энергии системы равно работе, совершенной человеком:

A = W2 - W1 = .

Учитывая, что ω2 = J1ω1/J2, получаем работу, совершаемую человеком:

= 190 Дж.

 

 


 








Дата добавления: 2014-12-02; просмотров: 2789;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.004 сек.