Химические свойства. Ароматические нитросоединения способны реагировать как с участием бензольного кольца, так и нитрогруппы
Ароматические нитросоединения способны реагировать как с участием бензольного кольца, так и нитрогруппы. Указанные структурные элементы влияют на реакционную способность друг друга. Так, под воздействием нитрогруппы нитробензол в реакции электрофильного замещения вступает неохотно и новый заместитель принимает в м-положение. Нитрогруппа влияет не только на реакционную способность бензольного кольца, но и на поведение соседних функциональных групп в химических реакциях.
Рассмотрим реакции ароматических нитросоединений за счет нитрогруппы.
16.2.1. Восстановление.Одной из важнейших реакций нитросоединений является их восстановление до ароматических аминов, широко используемых при производстве красителей, лекарственных препаратов и фотохимикатов.
Возможность преобразования нитрогруппы в аминогруппу восстановлением нитросоединений впервые была показана Зининым в 1842 году на примере реакции нитробензола с сульфидом аммония
В последующем восстановление ароматических нитросоединений было предметом глубокого изучения. При этом установлено, что в общем случае восстановление носит сложный характер, протекает через ряд стадий с образованием промежуточных продуктов. Амины являются лишь конечным продуктом реакции. Результат восстановления определяется силой восстанавливающего агента и рН-среды. При электрохимическом восстановлении состав продуктов зависит от величины потенциала на электродах. Варьируя указанными факторами можно задержать процесс восстановления на промежуточных стадиях. В нейтральной и кислой средах восстановление нитробензола идет последовательно через образование нитрозобензола и фенилгидроксиламина
Когда восстановление проводится в щелочной среде, образовавшийся нитрозобензол и фенилгидроксиламин получают возможность конденсироваться между собой с образованием азоксибензола, в котором атомы азота и кислорода связаны между собой семиполярной связью
Предполагаемый механизм конденсации напоминает механизм альдольной конденсации
Восстановление азоксибензола в анилин идет через азо- и гидразобензолы
Все упомянутые выше промежуточные продукты восстановления нитробензола в анилин могут быть получены либо непосредственно из нитробензола, либо исходя друг из друга. Вот некоторые примеры
16.2.2. Влияние нитрогруппы на реакционную способность других функциональных групп.При изучении ароматических галогенпроизводных мы уже встречались со случаем, когда подходящим образом расположенная нитрогруппа (нитрогруппы) существенно влияла на нуклеофильное замещение галогена (бимолекулярное замещение ароматически связанного галогена). На примере о- и п-динитробензолов было установлено, что нитрогруппа может способствовать нуклеофильному замещению не только галогена, но даже другой нитрогруппы
Механизм бимолекулярного замещения нитрогруппы на гидроксильную группу можно представить как следующий двухстадийный процесс
Карбанион, образующийся на первой стадии рассматриваемой реакции, резонансно стабилизирован из-за вклада предельной структуры 1, в которой нитрогруппа оттягивает электроны именно с того углерода бензольного кольца, у которого их избыток.
Особенностью нуклеофильного замещения одной нитрогруппы под влиянием другой нитрогруппы является то, что реакция весьма чувствительна к расположению нитрогрупп относительно друг друга. Известно, что м-динитробензол не реагирует со спиртовым раствором аммиака даже при 250оС.
Другими примерами содействия нитрогруппы замещению, в данном случае гидроксила, являются превращения пикриновой кислоты
16.2.3. Комплексообразование с ароматическими углеводородами.Характерным свойством ароматических нитросоединений является их склонность образовать комплексы с ароматическими углеводородами. Связи в таких комплексах носят электростатический характер и возникают между электронодонорными и электроноакцепторными частицами. Рассматриваемые комплексы называют π-комплексами или комплексами с переносом заряда.
π–Комплексы в большинстве случаев представляют собой кристаллические вещества с характерными температурами плавления. При необходимости π-комплекс может быть разрушен с выделением углеводорода. Благодаря сочетанию указанных свойств π-комплексы используются для выделения, очистки и идентификации ароматических углеводородов. Особенно часто для комплексообразования используется пикриновая кислота, комплексы которой неправильно называются пикратами.
Дата добавления: 2014-12-24; просмотров: 4184;