Строение бензола
Бензол впервые был выделен М. Фарадеем в 1825 году из конденсата, выпавшего из светильного газа, используемого для освещения городских улиц Лондона. Фарадей назвал это жидкое легкоподвижное вещество с резким запахом «карбюрированным водородом» (carburated hydrogen). Важно при этом отметить, что уже тогда было установлено, что бензол состоит из равных частей углерода и водорода.
Несколько позже, в 1834 году, Митчерлих получил бензол декарбоксилированием бензойной кислоты. Он же установил элементный состав полученного соединения – С6Н6 – и предложил свое название для него – бензин. Однако с этим названием не согласился Либих. Ему показалось, что это название ставит бензол в один ряд с такими далекими от него веществами как хинин и стрихнин. По мнению Либиха более удачным названием для нового соединения является бензол, посколькуоно показывает близость бензола по свойствам к маслам (от немецкого оl – масло). Были и другие предложения. Поскольку бензол был выделен Фарадеем из светильного газа, то Лоран предложил (1837 г.) для него название фено от греческого «несущий свет». Это название не утвердилось, однако именно от него произошло название одновалентного остатка бензола – фенил.
Углеводороду Фарадея не повезло. Все предложенные для него названия оказались ущербными. Из либиховского названия «бензол» следует, что соединение содержит гидроксильную группу, которой там нет. Точно так же митчерлиховский «бензин» не содержит функциональную азотсодержащую группу. Более того, существование различных названий привело к разделению химиков. В немецкой и русской научной литературе утвердилось название «бензол», а в английской и французской – «бензен» (bensene, toluene, xylene).
На первый взгляд кажется, что установить строение бензола не представляет больших трудностей. В состав молекулы бензола входит лишь два элемента, на шесть атомов углерода приходится шесть атомов водорода. К тому же физические и химические свойства бензола изучены весьма обстоятельно. Однако эта работа затянулась на многие десятилетия и завершилась лишь в 1931 году.
Наиболее трудные барьеры к познанию структуры бензола были преодолены выдающимся немецким химиком Кекуле. С высоты современных знаний трудно понять и оценить значение выдвинутой им гипотезы, согласно которой молекула бензола имеет циклическое строение (1865 г.). Однако именно это предположение, при совокупном рассмотрении с числом изомеров у моно- и дизамещенных бензолов, привело Кекуле к известной формуле. По Кекуле бензол представляет собой шестичленное циклическое соединение с тремя чередующимися двойными связями, т.е. циклогексатриен
Именно эта структура согласуется с существованием одного и только одного монозамещенного бензола и трех изомеров дизамещенных бензолов
C момента появления структуры Кекуле началась ее критика, которую она, к сожалению, вполне заслуживала. Уже отмечалось, что характерная особенность ароматических соединений - присущий им ароматический характер. Структура Кекуле для бензола оказалась не в состоянии объяснить эту особенность ароматических соединений. В ряде случаев она не могла также объяснить отсутствия изомеров, в то время как формула циклогексатриена для бензола допускала их существование. Так, орто-замещенных бензолов может быть два изомера
однако обнаружить их не удалось. Сразу же отметим, что для преодоления этого затруднения Кекуле предложил рассматривать бензол как циклогексатриен с подвижными, не закрепленными, двойными связями. В результате быстрого преобразования I во II и наоборот бензол ведет себя как структура как бы состоящая из равных количеств I и II.
Итак, основной недостаток бензола Кекуле – невозможность объяснить на его основе ароматический характер соединений, содержащих в своей молекуле бензольное кольцо. Если бы бензол был циклогексатриеном, т.е. соединением с тремя двойными связями, то он должен был бы:
- легко окисляться даже холодным водным раствором КMnO4,
- уже при комнатной температуре присоединять бром и легко вступать в другие реакции электрофильного присоединения,
- быстро гидрироваться водородом в присутствии никеля при комнатной температуре,
В эти реакции бензол вступает неохотно, не так как алкены. А вот реакции замещения - весьма характерны для соединений ароматического ряда. Отсюда следует, что бензол не может быть циклогексатриеном и формула Кекуле не отражает истинного строения бензола. Основной недостаток бензола Кекуле – присутствие в нем двойных связей. Если бы их не было, то и не следовало бы ожидать от бензола проявления свойств, характерных для алкенов. В этой связи становится понятным, почему все дальнейшие попытки «усовершенствовать» формулу Кекуле носили форму лишить ее двойных связей, сохранив при этом за бензолом циклическое строение. Таковы формулы III – VII, предложенные Клаусом (1867 г.), Дьюаром (1867 г.), Армстронгом – Байером (1887 г.), Тиле (1899 г.) и Ладенбургом (1869 г.)
Ни одна из этих формул не могла объяснить всех свойств, присущих бензолу. Это стало возможным только с развитием квантовой химии.
Согласно современным представлениям о строении бензола его молекула представляет собой плоский правильный шестиугольник, на вершинах которого расположены углеродные атомы, находящиеся в sp2–гибридном состоянии. Каждый из шести углеродных атомов за счет трех тригональных гибридных орбиталей образует две σ-связи с соседними углеродами и еще одну связь с водородом. Все эти связи расположены в одной плоскости под углом 1200 друг к другу. В гибридизации участвуют лишь два из трех р-электронов углеродных атомов. Поэтому после образования σ-связей у каждого из шести углеродов бензольного кольца остается еще по одному р-электрону. Из истории установления строения бензола, растянувшегося на многие десятилетия, видно насколько трудно пробивало себе дорогу представление, что р-электроны способны перекрываться друг с другом не только попарно с образованием π-связей. При некоторых обстоятельствах возможно перекрывание облаков р-электронов как с соседом справа, так и с соседом слева
Это становится возможным, если молекула имеет циклическое строение, расстояния между углеродами одинаковы и оси р-электронов параллельны между собой. Последнее условие соблюдается, если молекула имеет плоское строение.
При таком построении молекулы бензола углеродные атомы связаны между собой не ординарными и не двойными связями. Эти связи, скорее всего, следовало бы отнести к «полуторным». Не лишним будет упомянуть, что согласно результатам рентгеноструктурного анализа кристаллического бензола все углерод-углеродные связи в бензоле имеют одинаковую длину 0.14 нм, которая является промежуточной между простой (0,154 нм) и двойной (0,134 нм) связями.
Таким образом, согласно современным представлениям в бензоле нет типичных двойных связей между углеродами.Следовательно, от такого соединения и не следует ожидать проявления свойств, обусловленных двойными связями. В то же время нельзя отрицать значительной непредельности молекулы бензола. Циклоалкан с шестью углеродами (циклогексан) содержит 12 водородных атомов, в то время как у бензола их всего 6. Отсюда следует, что формально бензол мог бы иметь три двойные связи и в реакциях присоединения вести себя как циклотриен. Действительно, в условиях реакций присоединения бензол присоединяет по три молекулы водорода, галогенов или озона.
В настоящее время в научно-технической литературе используется два графических изображения бензола
Одно из них подчеркивает непредельный характер бензола, а другое – его ароматичность.
Как же увязать строение бензола с его характерными свойствами, главным образом, с его ароматическим характером? Почему бензол проявляет уникальную термодинамическую устойчивость?
В свое время было показано, что алкены довольно легко присоединяют молекулу водорода и превращаются в алканы. Эта реакция протекает с выделением тепла, около 125,61 кДж на каждую двойную связь, и носит название - теплоты гидрирования. Попробуем использовать теплоту гидрирования для оценки термодинамической устойчивости бензола.
Реально существующие циклогексен, циклогексадиен и бензол гидрируются в циклогексан
Теплота гидрирования циклогексена составила 119,75 кДж. Тогда ожидаемое значение для циклогексадиена должно составить 119,75 х 2=239,50 кДж (в действительности 231,96 кДж). Если бы бензол имел три двойные связи (циклогексатриен Кекуле), то теплота гидрирования для него должна была бы быть 119,75 х 3=359,25 кДж. Экспериментальное же значение в последнем случае разительно отличается от ожидаемого. При гидрировании бензола выделяется лишь 208.51 кДж тепла, что меньше ожидаемого значения на 359,25 – 208.51=150,73 кДж. Эта энергия носит название энергии резонанса. Если при гидрировании бензола выделяется на 150,73 кДж меньше энергии от ожидаемого значения, то это означает лишь то, что сам бензол уже изначально содержит на 150,73 кДж меньше энергии, чем гипотетический циклогексатриен. Отсюда следует, что бензол не может иметь строения циклогексатриена. Стабильность молекулы бензола на величину энергии резонанса есть результат отсутствия в ней изолированных двойных связей и наличия единого электронного облака секстета р-электронов.
Приобретая благодаря выгодам своего строения высокую термодинамическую устойчивость, бензол в ходе химических реакций всячески стремится сохранить эту устойчивость. Понятно, что это может быть реализовано только при условии сохранения при химической реакции бензольного кольца в неизменном виде. Такую возможность предоставляют лишь реакции замещения и именно по этой причине для соединений ароматического ряда более характерны реакции замещения, чем присоединения. В ходе реакций электрофильного присоединения ароматическое соединение перестает быть ароматическим, теряет исключительную стабильность вместе с энергией резонанса, обуславливающей как раз эту стабильность. По этой причине ароматические соединения вступают в реакции присоединения гораздо труднее, чем, например, алкены. Другая особенность реакций присоединения с участием ароматических соединений – это их бескомпромиссность. Они либо не вступают в реакции присоединения, либо присоединяют сразу все. Об этом свидетельствует тот факт, что не удается получить из бензола продукты частичного гидрирования или хлорирования. Если уже эти реакции идут, то протекают таким образом, что сразу получаются продукты полного гидрирования или хлорирования
Такое развитие событий связано с тем, что единое электронное облако шести р-электронов у бензола или существует или не существует, промежуточные варианты для него исключены.
Дата добавления: 2014-12-24; просмотров: 3974;