АРХИТЕКТУРЫ ЦАП С МАЛЫМИ ИСКАЖЕНИЯМИ
Фактически, все высокоскоростные ЦАП с малыми искажениями используют некоторый вид режима токовой коммутации без ненасыщения. Как описано выше, прямой двоичный ЦАП с одним токовым ключом на разряд дает кодозависимые ложные сигналы и, конечно, не является наиболее оптимальной архитектурой.
Рис. - архитектуры 5-разрядных двоичных цап
ЦАП с одним токовым источником на кодовый уровень не имеет кодозависимых ложных сигналов, ноне практичен в реализации, когда требуется достижение высокой разрешающей способности. Тем не менее, эта характеристика может быть улучшена, если декодировать несколько первых старших разрядов (MSB) в код "термометра" при одном токовом ключе на уровень. Например, 5-разрядный ЦАП-"термометр" имел бы архитектуру, подобную представленной на рис.4.5.
Здесь входное двоичное слово фиксируется триггером и затем декодируется на один из 31 возможных выходов, которые управляют вторым триггером. Выход второго триггера управляет 31 токовым ключом с одинаковым весом, выходные сигналы которых складываются вместе. Эта схема эффективно устраняет почти всякую зависимость выходного кода от ложного сигнала. Остаточный ложный сигнал на выходе одинаков и не зависит от изменения входного кода, то есть он кодонезависимый, и может подлежать фильтрации, поскольку появляется на частоте преобразования ЦАП и ее гармониках.
Причинами искажений, связанных с полнодекодирующей архитектурой, являются, прежде всего, асимметричный выходной поворот (slewing), конечное время включения ивыключения ключей и интегральная нелинейность.
Очевидным недостатком этого типа ЦАП является большое количество триггеров и ключей, требуемых для создания 14-, 12-, 10- или даже 8-разрядного ЦАП.
На рис.4.6 представлена схема, посредством которой первые пять разрядов 10-разрядногоЦАП декодируются, как описано выше, и управляют 31 ключом с одинаковым весом.
Последние пять разрядов получены посредством использования двоично взвешенных источников тока. Сигналы от источников тока с одинаковым весом, подаваемые на лестничную резисторную схему R/2R, могли бы использоваться для получения младших разрядов (LSB), но этот подход требует наличия тонкопленочных резисторов.
В 14-разрядном ЦАП AD9772 (TxDAC™) с быстродействием 150 MSPS используется три секции сегментации, показанных на рис.4.7. В других представителях семейства AD977x и AD985x используется такой же принцип. Первые пять разрядов (MSB) полностью декодируются и управляют 31 токовым ключом с одинаковым весом, каждый из которых является источником для 512 уровней, соответствующих младшим разрядам. Следующие четыре разряда декодируются в 15 сигналов. Они управляют 15 токовыми ключами, каждый из которых является источником для 32 уровней, соответствующих следующим разрядам. Пять младших разрядов хранятся триггером и управляют традиционным двоичным взвешивающим ЦАП с одним разрядом на выход. Для реализации этой архитектуры требуется 51 токовый ключ и 51 триггер.
В основе ячейки токового ключа лежит дифференциальная МОП (PMOS) транзисторнаяпара, показанная на рис.4.8
Дифференциальные пары управляются низковольтной логикой, минимизирующей время переходных процессов при коммутации и временной сдвиг. Выходы ЦАП являются симметричными дифференциальными токовыми выходами, которые обеспечивают минимизацию искажений.
Дата добавления: 2014-12-21; просмотров: 1292;