Частотное регулирование.

Как следует из (4.1) пропорциональна частоте f1 и не зависит для данной машины от каких-либо других величин. Вместе с тем, изменяя f1, следует заботиться об амплитуде напряжения: при уменьшении f1 для сохранения магнитного потока на некотором, например, номинальном уровне в соответствии с (4.4) следует изменять так, чтобы

.

При увеличении частоты от номинальной при U1=U поток в соответствии с (4.4) будет уменьшаться.

Как следует из (4.11,а), в пренебрежении R1, т.е. в предположении, что E1»U1, критический момент также пропорционален , тогда как критическое скольжение sк обратно пропорционально f1.

Механические характеристики при частотном регулировании в предположении, что E1=U1, показаны на рис. 4.8,б.

Сопротивление цепи статора, которым мы пренебрегаем, оказывает влияние на характеристики особенно малых машин (киловатты) - пунктир на рис. 4.8,б, поскольку при снижении частоты E1<U1. Для компенсации этого влияния обычно несколько увеличивают напряжение при низких частотах - пунктир на рис. 4.8,в.

Проведем оценку частотного регулирования скорости по введенным ранее показателям

1. Регулирование двухзонное - вниз ( ) и вверх (U1=U, f1>f) от основной скорости.

2. Диапазон регулирования в разомкнутой структуре (8-10):1. Стабильность скорости - высокая.

3. Регулирование плавное.

4. Допустимая нагрузка - М=Мн при регулировании вниз от основной скорости (Ф » const), Р = Рн при регулировании вверх (Ф < Фн).

5. Способ экономичен в эксплуатации - нет дополнительных элементов, рассеивающих энергию; как будет показано далее, малы потери в переходных процессах. Несомненное достоинство - гибкость управления координатами в замкнутых структурах. Современные методы так называемого векторного управления обеспечивают частотно-регулируемому электроприводу практически те же свойства по управляемости, которые имеет самый совершенный электропривод постоянного тока.

6. Способ требует использования преобразователя частоты (ПЧ) - устройства, управляющего частотой и амплитудой выходного напряжения. Такие устройства - совершенные и доступные - появились в последнее десятилетие, однако они ещё сравнительно дороги - около 100 USD/кВт в 1999 г. Принцип построения современных ПЧ рассмотрен далее.

 

Параметрическое регулирование

Отсутствие до недавнего времени доступного и качественного преобразователя частоты приводило к поиску других решений, одно из которых - изменение U1 при f1 = f= const - рис. 4.9,а.

а) б)

Рис. 4.9. Схема (а) и механические характеристики (б) асинхронного электропривода с параметрическим регулированием

 

Как следует из (4.11,а), критический момент при таком регулировании будет снижаться пропорционально U12, критическое скольжение в соответствии с (4.12,а) останется неизменным - сплошные линии на рис. 4.9,б. В замкнутой по скорости структуре - пунктир на рис. 4.9,а - можно получить характеристики, показанные на рис. 4.9,б пунктиром, т.е. способ внешне выглядит весьма привлекательно.

Проведём его оценку.

1. Регулирование однозонное - вниз от основной скорости

2. Диапазон регулирования в замкнутой структуре (3-4):1; стабильность скорости удовлетворительная.

3. Плавность высокая.

4. Допустимая нагрузка резко снижается с уменьшением скорости, поскольку магнитный поток Ф º U1 при f1 = const. Рассмотрим это важное обстоятельство подробнее, воспользовавшись выражением для потерь в роторной цепи (4.9). Допустимыми в продолжительном режиме потерями можно считать номинальные , допустимые потери при регулировании определятся как DРдоп = Мдопw0s. Приравняв выражения для потерь, получим

, (4.17)

т.е. даже для специального двигателя с повышенным скольжением (очевидно невыгодного) sн¢ = 0,06 вместо стандартного sн = 0,03 снижение скорости всего на 20% (s = 0,2) потребует снижения момента в 3 раза - рис. 4.9,б.

5. Таким образом, рассмотренный способ регулирования очевидно неэффективен для использования в продолжительном режиме. Даже для самой благоприятной нагрузке - вентиляторной ( ) необходимо двух-трехкратное завышение установленной мощности двигателя с повышенным скольжением, интенсивный внешний обдув.

Важно отметить, что выражение (4.17) универсально для двигателей с короткозамкнутым ротором при , и все попытки обойти это ограничение каким - либо “хитрым” способом, кстати, все еще предпринимаемые, - бесперспективны.

Способ регулирования скорости изменением напряжения может в ряде случаев использоваться для кратковременного снижения скорости, а система ПН-АД очень полезна и эффективна для снижения пусковых токов, для экономии энергии при недогрузках.

6. Преобразователь напряжения ПН - простое устройство в 3-4 более дешевое, чем преобразователь частоты, и именно эта особенность системы ПН-АД приводила в ряде случаев к её неоправданному применению.

Кроме изложенных способов регулирования координат двигателей с короткозамкнутым ротором для этой цели используются иногда специальные двигатели с переключением обмоток статора, изменяющим число пар полюсов, т.е. в соответствии с (4.1) ступенчато регулирующие . Эти двигатели тяжелы, дороги, привод требует дополнительной переключающей аппаратуры и в связи с этим проигрывает современному частотно-регулируемому электроприводу.

 

 


<== предыдущая лекция | следующая лекция ==>
Механические характеристики. Энергетические режимы | Двигатели с фазным ротором - регулирование координат




Дата добавления: 2019-10-16; просмотров: 117; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию, введите в поисковое поле ключевые слова и изучайте нужную вам информацию.

Поделитесь с друзьями:

Если вам понравился данный ресурс вы можете рассказать о нем друзьям. Сделать это можно через соц. кнопки выше.
helpiks.org - Хелпикс.Орг - 2014-2020 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.009 сек.