Концентрационные пределы распространения пламени.
Из теории горения следует, что по мере понижения содержания недос-тающего компонента горючей смеси, а с ним и температуры горения, умень-шается нормальная скорость пламени. Изложенная в теме 7 теория не накла-дывает каких-либо ограничений на возможность уменьшения скорости пла-мени при обеднении горючей смеси. Нормальная скорость пламени ин может, казалось бы, уменьшаться до нуля, а температура горения – до температуры исходных газов.
В теме 7 мы рассматривали процесс сгорания как адиабатический. Но в реальных условиях существуют тепловые потери, которые нарушают адиаба-тичность сгорания.
Скорость неадиабатического пламени уменьшается при охлаждении зо-ны горения. Однако эта зона отдает непосредственно в окружающее про-странство небольшое количество тепла. Более интенсивны тепловые потери, связанные с охлаждением слоев газа, прилегающих к пламени (рис. 35). При этом температура остывающих продуктов сгорания оказывается меньше тем-пературы зоны реакции и возникает температурный градиент, направленный в сторону сгоревшего газа. В результате зона реакции охлаждается путем те-плопроводности. В тепловых потерях участвует также инагретая, но несго-ревшая смесь, передающая в конечном счете тепло зоны реакции в окру-жающее пространство.
Рис. 35. Изменение распределения температуры во фронте пламени под влиянием тепловых потерь: 1 – адиабатическое горение; 2, 3 – го-рение с тепловым потерями (q2<q3).
Относительная роль теплопотерь за счет теплопроводности к стенкам сосуда и излучения возрастает с уменьшением скорости горения, так как при этом продолжительность процесса теплоотдачи от нагретого газа больше. При определенном критическом значении тепловых потерь зона реакции про-грессивно охлаждается, реакция тормозится, и пламя затухает. Этот режим соответствует пределу распространения пламени.
При изучении механизма теплового самовоспламенения (рис. 22) было показано, что превышение теплоприхода над теплоотводом, приводящее к саморазогреву и воспламенению горючей смеси, начинается при температуре стенок сосуда То=Ткр. При этом мы рассматривали определенный состав сме-си, то есть соотношение горючего и окислителя, изменяя температуру стенок реакционного сосуда.
Теперь рассмотрим случай, когда температура стенок То=const, а изме-няется концентрация компонентов смеси.
Скорость выделения тепла, как и скорость пламени изменяется по урав-нению (6.2):
,
в котором существенную роль играет тепловой эффект реакции (Q) и кон-центрация веществ (с).
Схема соотношения между теплоотводом q2 и теплоприходом q1 при трех разных составах q1max, q1кр и q1и показана на рис. 36.
Рис. 36. Соотношение между теп-лоприходом и теплоотводом в го-рючих смесях при q1max > q1кр > q1и.
Величина тепловыделения, скорость пламени и температура горения достигают максимального значения для стехиометрических смесей (q1max).
При удалении состава смеси от стехиометрического возрастают потери тепла из зоны пламени на нагрев избытка компонента. Это приводит к сни-жению теплового эффекта реакции, прогрессивному охлаждению зоны горе-ния и уменьшению скорости распространения пламени до Uпр (кривая q1кр). При снижении количества горючего (бедные смеси) или окислителя (богатые смеси) больше критического пламя гаснет либо, с другой стороны, невоз-можно поджечь такую смесь внешним импульсом тепла (q1).
Таким образом, скорость пламени не может быть меньше определенно-го критического значения. Распространение пламени в смесях горючего и окислителя возможно лишь в определенном интервале концентраций. При поджигании смесей, состав которых выходит за эти пределы, стационарное пламя не образуется, и реакция, вызванная поджигающим импульсом, затуха-ет на некотором расстоянии от места ее инициирования. При выходе составов за эти пределы стационарное пламя затухает.
Для смесей горючего и окислителя принято различать верхнюю πmax и нижнюю πmin предельные концентрации горючего, которыми ограничена об-ласть взрывоопасных составов. Эти пределы являются важнейшей характе-ристикой взрывоопасное горючих газов и паров. Они зависят в основном от содержания инертных компонентов в смеси и в меньшей степени – от давле-ния и температуры. С повышением начальной температуры смеси πmin снижа-ется, а πmax повышается, поскольку в смесь вносится внешнее физическое те-пло.
Изменение начального давления смеси влияет на пределы по-разному. Так, для смеси водорода с воздухом они почти не изменяются, в то время как для окиси углерода резко сужаются и при 20 атм смеси становятся невзрыво-опасными.
Значения πmin и πmax определяют границы составов смесей, содержащих горючее и окислитель, образование которых не связано с опасностью взрыва. Исходя из этих величин, определяют возможности выбора безопасных соста-вов в технологических процессах.
Значения концентрационных пределов несколько зависят от формы и направления распространения пламени в сосуде, в котором изучается горе-ние. При поджигании у верхнего конца вертикальной трубы распространение пламени возможно в более узком интервале концентраций, чем при поджига-нии у нижнего конца. Эта особенность обусловлена возникновением конвек-тивных потоков, поднимающих вверх нагретые продукты сгорания и тем са-мым облегчающих распространение пламени вверх у предельных составов.
Ниже приведены значения концентрационных пределов распростране-ния пламени вверх для воздушных и кислородных смесей различных горю-чих при атмосферном давлении и комнатной температуре.
Таблица 9.1. Концентрационные пределы распространения пламени.
Горючее вещество | Воздушные смеси | Кислородные смеси | |||
Название | Формула | πmin | πmax | πmin | πmax |
Водород | Н2 | 4.0 | 7.5 | 4.0 | |
Окись углерода | СО | 12.5 | 15.5 | ||
Метан | СН4 | 5.3 | 5.1 | ||
Пропан | С3Н8 | 2.2 | 9.5 | 2.3 | |
Бутан | С4Н10 | 1.9 | 8.5 | 1.8 |
9.2.Общие закономерности для пределов распространения пламени.
Тепловая теория пределов распространения пламени Я.Б. Зельдовича устанавливает основные количественные критические условия для пределов распространения пламени. Так, зависимость скорости пламени от адиабати-ческой температуры горения (Тад) приближенно описывается уравнением
. (9.1)
При неадиабатическом сгорании, то есть наличии потерь, температура про-дуктов реакции и величины скорости пламени меньше теоретических и при критических условиях
(9.2)
Поделив уравнение (9.2) на (9.1), находим:
Допуская, что Ткр·Тад ≈Тад2 , получаем
При критических условиях ин= икр, тогда
, а
. (9.3)
Таким образом, охлаждение зоны реакции больше чем на характеристи-ческий интервал температуры приводит к прекращению горения.
После решения уравнений теплового баланса и их преобразований кри-тическое значение нормальной скорости пламени
. (9.4)
Тепловые потери не могут понизить нормальную скорость пламени бо-лее чем в е раз. При более интенсивной теплоотдаче стационарное горение прекращается.
Таким образом, по мере удаления состава смеси от стехиометрического или увеличения содержания инертного компонента температура горения, а с нею и нормальная скорость пламени настолько понижаются, что потери из-лучением приводят к заметной неадиабатичности горения. При дальнейшем понижении концентрации недостающего компонента достигается критиче-ское значение ин,и горение становится невозможным. Так, потери излучени-ем, не зависящие от аппаратурных условий, становятся важнейшим факто-ром, определяющим границы стационарного горения в бесконечном про-странстве. Их значение устанавливают концентрационные пределы распро-странения пламени.
Дата добавления: 2019-07-26; просмотров: 534;