Возникновение детонации.

 

Ускорение горения в трубах. Для возникновения детонации необходи-ма сильная ударная волна, в которой происходит достаточное нагревание взрывчатой среды. Такая волна может создаваться внешним инициирующим импульсом, например, при взрыве заряда взрывчатого вещества.

Однако в задачах взрывобезопасности значительно больший интерес представляет самопроизвольное возникновение детонации в горящем газе. Очевидно, что достаточно быстрое сжатие горючей среды может осуществ-ляться вследствие расширения этой среды при сгорании. Нагревание до тем-пературы адиабатического воспламенения в ударной волне (т. е. с малым временем задержки) требует очень высоких скоростей движения газа, поряд-ка 1 км/сек. Каков же механизм ускорения пламени, приводящий к столь бы-строму движению газа?

Самопроизвольная детонация, как правило, возникает только при сгора-нии в длинных трубах. Лишь в таких условиях возможно соответствующее ускорение пламени. Возникновению детонации существенно способствует поджигание газа со стороны закрытого конца трубы.

Как уже известно, величина нормальной скорости пламени даже наибо-лее взрывчатых газовых смесей не превосходит 15 м/сек. Многие же газовые системы, способные детонировать, имеют значительно меньшие нормальные скорости ин (порядка 1 м/сек и даже меньше). Хотя нормальные скорости пламени сравнительно невелики, дефлаграция может вызвать движение газа, достаточно быстрое для необходимого нагревания газа в ударной волне.

При неподвижных продуктах сгорания расширение газа приводит к возникновению потока исходной горючей среды. Эта среда движется по от-ношению к плоскому пламени со скоростью ип опр – 1), которая может в 5 – 15 раз превосходить величину ин. Такое расширение происходит при адиа-батическом (т.е. достаточно быстром) сгорании газа, подожженного у закры-того конца трубы.

Однако при сгорании в закрытой трубе фронт пламени не остается пло-ским. Быстрое движение газа и сопровождающее его трение о стенки трубы приводят к возрастающей турбулизации сгорающего газа. Фронт пламени все более вытягивается, его поверхность увеличивается, и скорость пламени в целом возрастает в соответствии с законом площадей (7.12).

Ускорение пламени при его турбулизации имеет сложную природу. В результате влияния трения вырабатывается профиль скоростей течения по се-чению трубы (см. рис. 30), причем скорость больше по оси и меньше у сте-нок. Такое вытягивание пламени возможно в пределах сохранения ламинар-ного режима. На последующих стадиях ускорения часто возникают вибрации газа и пламени, связанные с появлением и отражением звуковых волн. На оп-ределенных участках наблюдается даже перемена знака направления движе-ния пламени – его отбрасывание в сторону точки зажигания.

Все возрастающая турбулизация зоны горения приводит к тому, что «конус» сильно вытянутого пламени перестает быть гладким. Он заменяется размытой турбулентной зоной, в которой отдельные элементы исходной го-рючей среды и продуктов сгорания хаотически перемешаны между собой.

Возникновение детонации нельзя рассматривать как непрерывный пе-реход от дефлаграции, все более ускоряющейся вследствие возрастающей турбулентности. Детонация возникает скачкообразно. На фоторегистрациях ясно фиксируется момент воспламенения на определенном расстоянии впе-реди фронта достаточно ускорившегося пламени. В этой точке давление дос-тигает большего значения, чем в стационарной детонационной волне.

Схема распространения ударных волн при ускоряющемся горении и возникновения детонации показана на рис. 33.

 

Рис. 33. Схема возникнове-ния детонации: ОЕ – уча-сток ускоряющегося пламе-ни; ОА; D1A; D2A; D3A – по-следовательно отходящие ударные волны; АВ – дето-нация.

 

 

Когда фронт горения находится в точке С, возникает детонация в точке А. Вправо линия АВ – распространение детонационной волны, АЕ – ретона-ционная волна (по продуктам горения).

Преддетонационный разгон пламени в трубе характеризуется расстоя-нием от точки зажигания (т.О) до места возникновения детонации (т.А). Преддетонационное расстояние возрастает с повышением температуры ис-ходной горючей среды и сокращается с понижением начального давления. Разбавление смеси инертным газом или избыточным компонентом, замед-ляющее дефлаграционное горение, затрудняет переход к детонации. Абсо-лютное значение преддетонационного расстояния возрастает с увеличением диаметра трубы; однако если это расстояние измерять диаметрами трубы, де-тонация возникает легче в широких трубах. Как правило, преддетонационное расстояние для гладкой трубы равно примерно нескольким десяткам диамет-ров.

Вследствие трения газа о стенки, турбулизация газа при горении, при-водящая в конце концов к ускорению горения, достаточному для возникновения детонации, возможна и при поджигании у открытого конца трубы. Одна-ко расширение продуктов сгорания в закрытой трубе способствует более ран-нему развитию детонации.

Все изложенное характеризует закономерности возникновения детона-ции в гладких трубах. Преддетонационное расстояние сокращается в 10–20 раз (до 2 – 4 диаметров трубы) при переходе от гладких труб к шероховатым.

Вследствие возможности ускорения горения в трубах и возникновения детонации газопроводы и длинные аппараты с неровной, шероховатой, внут-ренней поверхностью – очень опасные объекты. Эта опасность особенно воз-растает, если такая труба – потенциальный очаг детонации – соединена с большой емкостью, заполненной тем же взрывчатым газом.

 








Дата добавления: 2019-07-26; просмотров: 328;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.006 сек.