Экспертные системы. Архитектура типовой экспертной системы.
В начале восьмидесятых годов в исследованиях по искусственному интеллекту сформировалось самостоятельное направление, получившее название "экспертные системы" (ЭС). Цель исследований по ЭС состоит в разработке программ, которые при решении задач, трудных для эксперта-человека, получают результаты, не уступающие по качеству и эффективности решениям, получаемым экспертом. Исследователи в области ЭС для названия своей дисциплины часто используют также термин "инженерия знаний", введенный Е.Фейгенбаумом как "привнесение принципов и инструментария исследований из области искусственного интеллекта в решение трудных прикладных проблем, требующих знаний экспертов".
Программные средства (ПС), базирующиеся на технологии экспертных систем, или инженерии знаний (в дальнейшем будем использовать их как синонимы), получили значительное распространение в мире. Важность экспертных систем состоит в следующем:
технология экспертных систем существенно расширяет круг практически значимых задач, решаемых на компьютерах, решение которых приносит значительный экономический эффект;
технология ЭС является важнейшим средством в решении глобальных проблем традиционного программирования: длительность и, следовательно, высокая стоимость разработки сложных приложений;
высокая стоимость сопровождения сложных систем, которая часто в несколько раз превосходит стоимость их разработки; низкий уровень повторной используемости программ и т.п.;
объединение технологии ЭС с технологией традиционного программирования добавляет новые качества к программным продуктам за счет: обеспечения динамичной модификации приложений пользователем, а не программистом; большей "прозрачности" приложения (например, знания хранятся на ограниченном ЕЯ, что не требует комментариев к знаниям, упрощает обучение и сопровождение); лучшей графики; интерфейса и взаимодействия.
По мнению ведущих специалистов , в недалекой перспективе ЭС найдут следующее применение:
ЭС будут играть ведущую роль во всех фазах проектирования, разработки, производства, распределения, продажи, поддержки и оказания услуг;
технология ЭС, получившая коммерческое распространение, обеспечит революционный прорыв в интеграции приложений из готовых интеллектуально-взаимодействующих модулей.
ЭС предназначены для так называемых неформализованных задач, т.е. ЭС не отвергают и не заменяют традиционного подхода к разработке программ, ориентированного на решение формализованных задач.
Неформализованные задачи обычно обладают следующими особенностями:
ошибочностью, неоднозначностью, неполнотой и противоречивостью исходных данных;
ошибочностью, неоднозначностью, неполнотой и противоречивостью знаний о проблемной области и решаемой задаче;
большой размерностью пространства решения, т.е. перебор при поиске решения весьма велик;
динамически изменяющимися данными и знаниями.
Следует подчеркнуть, что неформализованные задачи представляют большой и очень важный класс задач. Многие специалисты считают, что эти задачи являются наиболее массовым классом задач, решаемых ЭВМ.
Экспертные системы и системы искусственного интеллекта отличаются от систем обработки данных тем, что в них в основном используются символьный (а не числовой) способ представления, символьный вывод и эвристический поиск решения (а не исполнение известного алгоритма).
Экспертные системы применяются для решения только трудных практических (не игрушечных) задач. По качеству и эффективности решения экспертные системы не уступают решениям эксперта-человека. Решения экспертных систем обладают "прозрачностью", т.е. могут быть объяснены пользователю на качественном уровне. Это качество экспертных систем обеспечивается их способностью рассуждать о своих знаниях и умозаключениях. Экспертные системы способны пополнять свои знания в ходе взаимодействия с экспертом. Необходимо отметить, что в настоящее время технология экспертных систем используется для решения различных типов задач (интерпретация, предсказание, диагностика, планирование, конструирование, контроль, отладка, инструктаж, управление ) в самых разнообразных проблемных областях, таких, как финансы, нефтяная и газовая промышленность, энергетика, транспорт, фармацевтическое производство, космос, металлургия, горное дело, химия, образование, целлюлозно-бумажная промышленность, телекоммуникации и связь и др.
Коммерческие успехи к фирмам-разработчикам систем искусственного интеллекта (СИИ) пришли не сразу. На протяжении 1960 - 1985 гг. успехи ИИ касались в основном исследовательских разработок, которые демонстрировали пригодность СИИ для практического использования. Начиная примерно с 1985 г. (в массовом масштабе с 1988 - 1990 гг.), в первую очередь ЭС, а в последние годы системы, воспринимающие естественный язык (ЕЯ-системы), и нейронные сети (НС) стали активно использоваться в коммерческих приложениях.
Следует обратить внимание на то, что некоторые специалисты (как правило, специалисты в программировании, а не в ИИ) продолжают утверждать, что ЭС и СИИ не оправдали возлагавшихся на них ожиданий и умерли. Причины таких заблуждений состоят в том, что эти авторы рассматривали ЭС как альтернативу традиционному программированию, т.е. они исходили из того, что ЭС в одиночестве (в изоляции от других программных средств) полностью решают задачи, стоящие перед заказчиком. Надо отметить, что на заре появления ЭС специфика используемых в них языков, технологии разработки приложений и используемого оборудования (например, Lisp-машины) давала основания предполагать, что интеграция ЭС с традиционными, программными системами является сложной и, возможно, невыполнимой задачей при ограничениях, накладываемых реальными приложениями. Однако в настоящее время коммерческие инструментальные средства (ИС) для создания ЭС разрабатываются в полном соответствии с современными технологическими тенденциями традиционного программирования, что снимает проблемы, возникающие при создании интегрированных приложений.
Причины, приведшие СИИ к коммерческому успеху, следующие.
Интегрированность. Разработаны инструментальные средства искусственного интеллекта (ИС ИИ), легко интегрирующиеся с другими информационными технологиями и средствами (с CASE, СУБД, контроллерами, концентраторами данных и т.п.).
Открытость и переносимость. ИС ИИ разрабатываются с соблюдением стандартов, обеспечивающих открытость и переносимость [14].
Использование языков традиционного программирования и рабочих станций. Переход от ИС ИИ, реализованных на языках ИИ (Lisp, Prolog и т.п.), к ИС ИИ, реализованным на языках традиционного программирования (С, C++ и т.п.), упростил обеспечение интегриро-ванности, снизил требования приложений ИИ к быстродействию ЭВМ и объемам оперативной памяти. Использование рабочих станций (вместо ПК) резко увеличило круг приложений, которые могут быть выполнены на ЭВМ с использованием ИС ИИ.
Архитектура клиент-сервер. Разработаны ИС ИИ, поддерживающие распределенные вычисления по архитектуре клиент-сервер, что позволило:снизить стоимость оборудования, используемого в приложениях, децентрализовать приложения, повысить надежность и общую производительность (так как сокращается количество информации, пересылаемой между ЭВМ, и каждый модуль приложения выполняется на адекватном ему оборудовании).
Проблемно/предметно-ориентированные ИС ИИ. Переход от разработок ИС ИИ общего назначения (хотя они не утратили свое значение как средство для создания ориентированных ИС) к проблемно/предметно-ориентированным ИС ИИ [9] обеспечивает: сокращение сроков разработки приложений; увеличение эффективности использования ИС; упрощение и ускорение работы эксперта; повторную используемость информационного и программного обеспечения (объекты,классы,правила,процедуры).
Дата добавления: 2019-04-03; просмотров: 497;