Требования, предъявляемые к научным гипотезам
В отличие от обычных догадок и предположений гипотезы в науке тщательно анализируются с точки зрения их соответствия тем критериям и стандартам научности, о которых шла речь в предыдущих Лекциях. Иногда в таких случаях говорят о состоя-тельности научных гипотез, возможности и целесообразности их дальнейшей разработки. Перед разработкой гипотеза должна пройти стадию предварительной проверки и обоснования. Такое обоснование должно быть как эмпирическим, так и теоре-тическим, поскольку в опытных и фактуальных науках гипотеза строится не только на основании существующих фактов, но и имеющегося теоретического знания и, прежде всего, законов, принципов и теорий.
Поскольку для объяснения одних и тех же фактов можно предложить множество различных гипотез, то возникает задача выбора среди них тех, которые можно подвергнуть дальнейшему анализу и разработке. Для этого уже на предварительной стадии обоснования необходимо наложить на гипотезы ряд требований, выполнение которых будет свидетельствовать, что они не являются простыми догадками или произвольными предположениями. Это, однако, не означает, что после такой проверки гипотезы обязательно окажутся истинными или даже весьма правдоподобными суждениями.
Обсуждая вопрос о критериях научности гипотез, нельзя не учитывать философских и методологических аргументов в их защиту. Общеизвестно, что сторонники эмпиризма и позити-визма неизменно подчеркивают приоритет опыта над размыш-лением, эмпирии над теорией. Поэтому они настаивают, чтобы любая гипотеза опиралась, на данные наблюдения и опыта, а
наиболее радикальные эмпиристы — даже на свидетельства непосредственных чувственных восприятий. Их противники — рационалисты, наоборот, требуют, чтобы новая гипотеза была как можно лучше связана с прежними теоретическими пред-ставлениями. С диалектической точки зрения обе эти позиции являются односторонними и поэтому одинаково неприемле-мыми, когда абсолютизируются и противопоставляются друг другу. Тем не менее в единой системе критериев они, несомненно, должны учитываться.
Переходя к обсуждению специфических критериев состоя-тельности гипотез, нельзя не заметить, что требования, кото-рые к ним предъявляются, представляют собой конкретизацию и детализацию общих принципов научности знания, рассмот-ренных в предыдущих Лекциях. Эти специфические требования к научным гипотезам заслуживают особого внимания, ибо они помогают осуществить выбор между гипоте-зами с различной объяснительной и предсказательной силой.
1. Релевантность гипотезы представляет собой необходимое предварительное условие признания ее допустимой не только в науке, но и в практике повседневного мышления. Термин «релевантный» (от англ. relevant — уместный, относящийся к делу) характеризует отношение гипотезы к фактам, на которые она опирается. Если эти факты могут быть логически выведены из гипотезы, то она считается релевантной к ним. В противном случае гипотеза называется иррелевантной, не имеющей отно-шения к имеющимся фактам1. Проще говоря, такие факты не подтверждают, и не опровергают гипотезу. Процесс логического вывода фактов из гипотезы не следует, однако, понимать слиш-ком упрощенно. Обьино гипотеза в науке фигурирует вместе с хорошо установленными законами или теориями, т. е. входит в состав некоторой теоретической системы. В этом случае речь должна идти о логическом выводе фактов именно из такой системы. Поскольку любая гипотеза выдвигается либо для объяснения фактов известных, либо для предсказания фактов неизвестных, постольку гипотеза, безразличная к ним, т.е. иррелевантная, не будет представлять никакого интереса.
2. Проверяемость гипотезы в опытных и фактуальных науках в конечном итоге всегда связана с возможностью ее сопостав-
Во избежание недоразумений заметим, что под фактами здесь и в дальнейшем изложении речь идет не об объективных явлениях и событиях, а о высказываниях о них(Авт.),
ления с данными наблюдения или эксперимента, т. е. эмпирии-ческими фактами. Отсюда, конечно, не вытекает требование эмпирической проверки каждой гипотезы. Как уже отмечалось, речь должна идти о принципиальной возможности такой проверки. Дело в том, что многие фундаментальные законы и гипотезы науки содержат в своем составе понятия о ненаблюдаемых объектах, их свойствах и отношениях, таких, как элементарные частицы, электромагнитные волны, различные физические поля и т. п., которые невозможно наблюдать непосредственно. Однако предположения об их существовании можно проверить косвенным путем по результатам, которые можно зарегистрировать на опыте с помощью соответствующих приборов. По мере развития науки, проникновения в глубинные структуры материи возрастает число гипотез более высокого теоретического уровня, вводящих различные виды ненаблюдаемых объектов, следствием этого является усложнение и совершенствование экспериментальной техники для их проверки. Так, например, современные исследования в области ядра и элементарных частиц, радиоастрономии, квантовой электроники обьино ведутся на больших установках и требуют значительных материальных затрат1.
Таким образом, прогресс в научном исследовании достигается, с одной стороны, выдвижением более абстрактных гипотез, содержащих ненаблюдаемые объекты, а с другой — совер-шенствованием наблюдательной и экспериментальной техники, с помощью которой возможно проверить следствия непосредственно непроверяемых гипотез.
Возникает вопрос: возможно ли существование непрове-ряемых гипотез, т.е. гипотез, следствия которых нельзя наблюдать и регистрировать на опыте?
Следует различать три случая непроверяемых гипотез:
Во-первых, когда следствия гипотез нельзя проверить существующими в данный период развития науки средствами наблюдения и измерения. Известно, что создатель первой неев-клидовой геометрии, Н. И. Лобачевский, для того, чтобы пока-зать, что его «воображаемая» система реализуется в действии-тельности, попытался измерить сумму углов огромного тре-угольника, две вершины которого расположены на Земле, а
1 Физический энциклопедический словарь. — М: Советская энциклопедия, 1983. — С.816.
.81
третья — на неподвижной звезде. Однако он не смог обнару-жить разницы между суммой внутренних углов треугольника, равной 180° согласно геометрии Евклида, и суммой измеренных углов, которая должна быть меньше 180° в его, неевклидовой, геометрии. Эта разница оказалась в пределах возможных ошибок наблюдения и измерения. Приведенный пример отнюдь не является исключением, так как то, что невозможно наблюдать и точно измерить в одно время, становится возможным осуществить с развитием науки и техники в другое время. Отсюда становится ясным, что проверяемость гипотез имеет относительный, а не абсолютный характер.
Во-вторых, принципиально непроверяемыми являются гипотезы, структура которых не допускает такой проверки с помощью возможных фактов, или же они специально создаются для оправдания данной гипотезы. Последние в науке именуются как «ad hoc гипотезы». В этой связи заслуживает особого внимания дискуссия, развернувшаяся вокруг гипотезы о существовании так называемого «мирового эфира». Чтобы проверить ее, американский физик А. Майкельсон осуществил оригинальный эксперимент, в результате которого выяснилось, что эфир не оказывает никакого влияния на скорость распространения света1. Этот отрицательный результат опыта ученые интерпретировали по-разному. Наиболее широкое распространение получила гипотеза Лоренца — Фицджеральда, которая объясняла отрицательный результат сокращением линейных размеров плеча интерферометра Майкельсона, движущегося в одном направлении с Землей. Поскольку линейные размеры интерферометра будут в свою очередь сокращаться на соответствующую величину, постольку гипотеза оказывается принципиально непроверяемой. Создается впечатление, что она была придумана для объяснения отрицательного результата эксперимента и поэтому имеет характер гипотезы ad hoc. Такого рода гипотезы обычно не допускаются в научном познании потому, что они могут относиться либо к отдельным фактам, для оправдания которых специально придумываются, либо являются простым описанием наблюдаемых фактов. В первом случае они не могут быть применены для объяснения других фактов и тем самым не расширяют нашего знания, не говоря уже о том,
что они не могут быть проверены с помощью других фактов. Во втором случае подобные гипотезы вряд ли следует называть научными, ибо они представляют собой простое описание, а не объяснение фактов1.
Несостоятельность гипотезы Лоренца — Фицджеральда стала очевидной после того, как А. Эйнштейн в специальной (частной)2 теории относительности показал, что понятия про-странства и времени имеют не абсолютный, а относительный характер, который определяется избранной системой отсчета.
В-третьих, универсальные математические и философские гипотезы, имеющие дело с весьма абстрактными объектами и суждениями не допускают эмпирической проверки их следствий. Проводя демаркацию между ними и эмпирически проверяемыми гипотезами, К. Поппер был совершенно прав, но в отличие от позитивистов не объявлял эти гипотезы бессмыс-ленными утверждениями. Несмотря на то, что математические и философские гипотезы непроверяемы эмпирически, они могут и должны быть обоснованы рационально-критически. Такое обоснование математические гипотезы могут получить в естественных, технических и социально-экономических науках при использовании их в качестве формального аппарата или языка для выражения количественных и структурных зависимостей между величинами и отношениями, исследуемыми в конкретных науках.
Многие философские гипотезы часто являются следствием трудностей, возникающих в частных науках. Анализируя эти трудности, философия способствует постановке определенных проблем перед конкретными науками и тем самым способствует поиску их решения. Псевдопроблемы и натурфилософские гипотезы с точки зрения современной науки не допускают никакой проверки и обоснования и поэтому не заслуживают обсуждения в серьезной науке.
3. Совместимость гипотез с существующим научным знанием. Это требование очевидно, так как современное научное знание в любой его отрасли представляет собой не совокупность отдельных фактов, их обобщений, гипотез и законов, а определенную логически связанную систему. Вот почему вновь создаваемая гипотеза не должна противоречить не только
1 Физический энциклопедический словарь/ Под ред. A.M. Прохорова. — М.: Большая российская энциклопедия, 1995. — С. 225.
1 Copi I. Introduction to Logic — N.Y.: МастШап, 1954. — P.422—423. » 2 Физический энциклопедический словарь. — С. 507.
имеющимся фактам, но и существующему теоретическому знанию. Однако это требование также нельзя абсолютизировать. В самом деле, если бы наука сводилась только к простому накоплению информации, то прогресс, а тем более коренные, качественные изменения, которые принято называть научными революциями, были бы в ней невозможны. Отсюда становится ясным, что новая гипотеза должна согласовываться с наиболее фундаментальным, хорошо проверенным и надежно обосно-ванным теоретическим знанием, каким являются принципы, законы и теории науки. Поэтому, если возникает противоречие между гипотезой и прежним знанием, то в первую очередь сле-дует проверить факты, на которые она опирается, а также эмпирические обобщения, законы и представления, на которых основывается прежнее знание. Только в случае, когда большое число достоверно установленных фактов начинает противоре-чить прежним теоретическим представлениям, возникает необ-ходимость ревизии и пересмотра таких представлений.
Напомним, что' именно такую ситуацию Т. Кун характери-зует как кризисную, требующую перехода от старой парадигмы к новой. Однако вновь возникшая парадигма или фундамен-тальная теория не отвергает хорошо проверенные и надежно обоснованные старые теории, а указывает определенные границы их применимости.
Действительно, законы механики Ньютона не опровергли законы свободного падения тел, открытые Галилеем или законы движения планет в Солнечной системе, установленные Кеплером, а только уточнили или определили. реальную область их действительного применения. В свою очередь, частная теория относительности Эйнштейна доказала, что законы механики Ньютона применимы лишь к телам, движущимся со скоростями, значительно меньшими скорости света. Общая теория относительности выявила границы применения теории гравитации Ньютона. Одновременно с этим квантовая механика показала, что принципы классической механики применимы лишь к макротелам, где можно пренебрегать квантом действия.
Новые теории, имеющие более глубокий и общий характер, не отвергают старые теории, а включают их в себя в качестве так называемого предельного случая. С теоретике-познаватель-ной точки зрения эту особенность научного знания характери-зуют как преемственность в его развитии, а методологически — как определенное соответствие между старыми и новыми тео-
риями, а в такой науке, как физика, эта преемственность выступает, например, как принцип соответствия, служащий эвристическим или регулятивным средством для построения новой гипотезы или теории на основе старой.
4. Объяснительная и предсказательная сила гипотезы. В логике под силой гипотезы или любого другого утверждения понимают количество дедуктивных следствий, которые можно вывести из них вместе с определенной дополнительной информацией (начальные условия, вспомогательные допущения и др.). Очевидно, что чем больше таких следствий может быть вывед-ено из гипотезы, тем большей логической силой она обладает, и наоборот, чем меньше таких следствий, тем меньшую силу она имеет. Рассматриваемый критерий в некотором отношении сходен с критерием проверяемости, но в то же время отличен от него. Гипотеза считается проверяемой, если из нее можно в принципе вывести некоторые наблюдаемые факты.
Что же касается объяснительной и предсказательной силы гипотез, то этот критерий оценивает качество и количество выводимых из них следствий. Если из двух одинаково проверяемых и релевантных гипотез выводится неодинаковое количество следствий, т.е. подтверждающих их фактов, тогда большей объяснительной силой будет обладать та из них, из которой выводится наибольшее количество фактов, и, наоборот, меньшую силу будет иметь гипотеза, из которой следует меньшее количество фактов. Действительно, выше уже отмечалось, что когда Ньютон выдвинул свою гипотезу об универсальной гравитации, то она оказалась в состоянии объяснить факты, которые следовали не только из гипотез Кеплера и Галилея, ставших уже законами науки, но также дополнительные факты. Только после этого она стала зако-ном всемирного тяготения. Общая теория относительности Эйнштейна сумела объяснить не только факты, долгое время остававшиеся неясными в ньютоновской теории (например, движение перигелия Меркурия), но и предсказать такие новые факты, как отклонение светового луча вблизи больших гравита-ционных масс и равенство инертной и гравитационной массы.
Оценка гипотезы по качеству напрямую зависит от значе-ния тех фактов, которые из нее выводятся и поэтому сопряжена со многими трудностями, главной из которых является опреде-ление степени, с которой факт подтверждает или подкрепляет гипотезу. Однако никакой простой процедурой оценки этой степени наука не располагает и поэтому при поиске подкрепляю-
щих гипотезу фактов стремятся к тому, чтобы факты были как можно более разнообразными.
Поскольку логическая структура предсказания не отличается от структуры объяснения, постольку все, что говорилось об объяснительной силе гипотез, можно было бы отнести и к их предсказательной силе. Однако с методологической точки зрения такой перенос вряд ли правомерен, ибо предсказание в отличие от объяснения имеет дело не с существующими фактами, а фактами, которые предстоит еще обнаружить, а поэтому их оценка может быть дана лишь в вероятностных терминах. С психологической и прагматической точки зрения предсказание новых фактов гипотезой значительно усиливает нашу веру в нее. Одно дело, когда гипотеза объясняет факты уже известные, существующие, и другое, — когда она предсказывает факты до этого неизвестные. В этой связи особого внимания заслуживает сравнение двух конкурирующих гипотез по их предсказательной силе, которое служит логической основой решающего эксперимента.
Если имеются две гипотезы Hi и #2, причем из первой гипотезы можно вывести предсказание Ej, а из второй — несовместное с ним предсказание Ег, тогда можно осуществить эксперимент, который решит, какая из гипотез будет верной. Действительно, если в результате эксперимента будет опровергнуто предсказание Eh а тем самым и гипотеза Hi, тогда верным окажется гипотеза Дг, и наоборот.
Интересно отметить, что на идею решающего эксперимента опирался еще X. Колумб при обосновании своего мнения, что Земля имеет не плоскую, а сферическую форму. Один из его аргументов состоял в том, что при отдалении корабля от пристани сначала становятся невидимыми его корпус и палуба и только потом исчезают из поля зрения верхние его части и мачты. Ничего подобного не наблюдалось бы, если Земля имела плоскую поверхность. Впоследствии сходные аргументы для доказательства шарообразности Земли использовал Н. Коперник
5. Критерий простоты гипотез. В истории науки были случаи, когда конкурирующие гипотезы одинаково удовлетворяли всем перечисленным выше требованиям. Тем не менее, одна из гипотез оказывалась наиболее приемлемой именно вследствие своей простоты. Наиболее известным историческим примером такой ситуации является противоборство гипотез К. Птолемея
и Н. Коперника. Согласно гипотезе Птолемея, центром мира является Земля, вокруг которой вращаются Солнце и другие небесные тела (отсюда происходит ее название «геоцентрическая система мира»). Для описания движения небесных тел Птолемей использовал весьма сложную математическую систему, позволявшую предвычислять их положение в небе, согласно которой, кроме движения по главной орбите (деференту) планеты совершают также движения по малым окружностям, названным эпициклами. Траектория движения планет складывалась из движения по эпициклу, центр которого, в свою очередь, равномерно перемещается по деференту. Такое усложнение, как мы видели, потребовалось Птолемею для того, чтобы согласовать предсказания своей гипотезы с наблюдаемыми астрономическими фактами. По мере расхождения теоретических предсказаний гипотезы с фактами, все более сложной и запутанной оказывалась сама гипотеза: к имеющимся эпициклам добавлялись все новые эпициклы, вследствие чего геоцентрическая система мира установилась все более громоздкой и неэффективной.
Гелиоцентрическая гипотеза, выдвинутая Н. Коперником, сразу покончила с этими трудностями. В центре его системы находится Солнце (на этом основании ее называют гелиоцен-трической системой), вокруг которого движутся планеты, в том исле и Земля. Несмотря на кажущееся противоречие этой гипотезы с наблюдаемым движением Солнца, а не Земли, и упорное сопротивление церкви признанию гелиоцентрической гипотезы, она в конце концов победила не в последнюю очередь пагодаря своей простоте, ясности и убедительности исходных посылок. Но что подразумевают обычно под термином «простота» в науке и повседневном мышлении? К какой именно простоте стремится научное познание?
В субъективном смысле под простотой знания подразумевают яечто более знакомое, привычное, связанное с непосредственным опытом и здравым смыслом. С такой точки зрения гео-(дентрическая система Птолемея кажется проще, так как она не требует переосмысления данных непосредственного наблюдения, которые показывают, что движется не Земля, а Солнце, нередко простота гипотезы или теории связывается с легкостью ее понимания, отсутствием в ней сложного математического аппарата, возможностью построения наглядной модели.
При интерсубъективном подходе к гипотезе, исключающем ее оценку по вышеупомянутым субъективным основаниям, можно
выделить по крайней мере четыре значения термина простоты гипотезы:
●-Одна гипотеза будет проще другой, если она содержит меньше исходных посылок для вывода из нее следствий. Например, гипотеза Галилея о постоянстве ускорения свободного падения опирается на большее число посылок, чем универсальная, гипотеза тяготения, выдвинутая Ньютоном. Именно поэтому первая гипотеза может быть логически выведена из второй при соответствующем задании начальных или граничных условий.
●-С логической простотой гипотезы тесно связана ее общ-ность. Чем меньше исходных посылок содержит гипотеза, тем большее число фактов она в состоянии объяснить. Но в этом случае посылки должны иметь более глубокое содержание и охватывать больший круг следствий. Здесь можно, по-видимому, говорить о законе обратного отношения между содержанием гипотезы и областью ее применения, который аналогичен известному логическому закону об обратном отношении между содержанием и объемом понятия1. Возвращаясь к вышеприве-денному примеру, можно сказать, что универсальная гипотеза тяготения Ньютона проще гипотезы Галилея потому, что она содержит меньше посылок, и вследствие этого имеет более общий характер. Следует, однако, обратить внимание на то, что посылки более общей гипотезы имеют и более глубокий характер, т.е. выражают более существенные особенности изучаемой действительности.
●-С методологической точки зрения простота гипотезы связана с системностью ее исходных посылок, которая позволяет устанавливать логические связи между фактами, которые охва-тываются такой гипотезой. Целостная система посылок гипо-тезы позволяет единым взглядом усмотреть все относящиеся к лей факты и тем самым объяснить их на основе общих принципов. В таком случае отпадает необходимость обращения к гипотезам типа ad hoc.
●-Наконец, для современного этапа развития научного зна-ния очень важно проводить различие между простотой самой гипотезы, заключающейся в ее общности и минимальности ис-ходных посылок, и сложностью математического аппарата для ее выражения. В ходе развития научного познания это разли-
чие принимает форму определенного противоречия. С возник-новением более общих и глубоких гипотез и теорий достигается более четкое выделение важнейших элементов их содержания в виде минимального числа исходных посылок. Одновременно с этим усложняются концептуальные модели и математический аппарат, используемый для их выражения.
На такое различие между простотой физической теории и математическими средствами ее выражения особое внимание обратил А. Эйнштейн, сравнивая свою общую теорию относительности с теорией тяготения И. Ньютона: «Чем проще и фундаментальнее становятся наши допущения, тем сложнее математическое орудие нашего рассуждения; путь от теории к наблюдению становится длиннее, тоньше и сложнее. Хотя это и звучит парадоксально, но мы можем сказать: современная физика проще, чем старая физика, и поэтому она кажется более трудной и запутанной»1.
Дата добавления: 2019-02-07; просмотров: 3449;