Малость радиуса действия тяготения Луны.
Согласно закону всемирного тяготения, тяготение Луны действует вплоть до границ Вселенной. Но самыми значимыми его проявлениями считаются, во-первых, динамическая реакция Земли на Луну, т.е. обращение Земли, в противофазе с обращением Луны, около их общего центра масс, и, во-вторых, лунные приливы в океанах. Однако, правда заключается в том, что тяготение Луны действует лишь в небольшой окололунной области, примерно до 10000 км от лунной поверхности – и, таким образом, оно даже до Земли далеко не достаёт. Поэтому пара Земля-Луна движется весьма своеобразно (см.12), ведь земное тяготение на Луну действует, а лунное тяготение на Землю – нет (см.11). И океанские приливы порождаются отнюдь не тяготением Луны (см.13).
Интересно, что тяготение Луны организовано не по принципу планетарного тяготения. Если Луна имела бы собственную гравитационную воронку, то, при радиолокации Луны узкополосным сигналом, отсутствовал бы вклад в эффект Допплера (как при нашумевшей в своё время радиолокации Венеры группой Котельникова в 1961 году), соответствующий изменению геоцентрического расстояния до Луны из-за того, что её орбита не является круговой. В действительности же этот вклад имеет место. Кстати, опять же: аномально организованное тяготение Луны порождается отнюдь не её веществом. Дело в том, что имеются убийственные свидетельства о том, что Луна представляет собой не сплошное тело, а тонкостенную оболочку – например, по результатам работы сейсмодатчиков на поверхности Луны. Сейсмические события, на которые реагировали эти сейсмодатчики, вызывали и искусственно, для чего на Луну направляли отработанные разгонные ступени ракет. Поразительным было то, что «лунотрясения» длились невероятно долго. Так, после удара о поверхность Луны третьей ступени ракеты Сатурн, использованной для разгона корабля Аполлон-13, «звон» «детектировался в течение более четырёх часов. На Земле, при ударе ракеты на эквивалентном удалении, сигнал длился бы всего несколько минут» [Л6]. Сейсмические колебания с такой высокой добротностью нетипичны для сплошного тела, и, наоборот, они характерны для полого резонатора.
Здесь мы имеем исключительный случай (для всех более чем шестидесяти спутников всех планет Солнечной системы), когда тяготение меньшего по рангу тела действует совместно с тяготением большего по рангу тела – но тяготение меньшего тела на некотором радиусе полностью сходит на нет. Малость этого радиуса проявилась в первых же полётах космических аппаратов в окололунном пространстве. Об этом свидетельствует анализ, во-первых, пролётных окололунных траекторий, и, во-вторых, орбит искусственных спутников Луны – эти орбиты возможны лишь в той области, где лунное тяготение доминирует над земным. Согласно закону всемирного тяготения, такой областью считается т.н. сфера действия Луны, радиус которой составляет 66000 км [Л4]. Но практика окололунных полётов указывает на то, что фактический радиус области лунного тяготения имеет значительно меньшую величину.
Так, советский аппарат «Луна-1», запущенный 2 января 1959 г., впервые в истории космонавтики достиг окрестностей Луны. Планировалось попадание в Луну, которое должна была обеспечить правильность вектора скорости аппарата в конце разгона. Но «из-за ошибки по углу места в 2о… допущенной при работе наземных радиотехнических средств пеленгации и управления ракетой, двигатель… выключился позже назначенного момента, что и послужило причиной промаха» [ВЕБ17]. Аппарат прошёл на расстоянии около 6000 км от поверхности Луны [Ч1] и, поскольку при разгоне ему была сообщена гиперболическая скорость, вышел за пределы сферы действия Земли, «превратившись… в первую искусственную планету Солнечной системы» [Ч1]. Даже тех скудных данных о параметрах полёта «Луны-1», которые имеются в свободном доступе, достаточно для того, чтобы рассчитать угол поворота траектории аппарата из-за действия лунного тяготения. Расчёт, основанный на концепции сферы действия Луны (с радиусом 66000 км), даёт для угла поворота траектории величину около 11о. Радиосигналы «Луны-1» принимались в течение ещё суток с небольшим после того, как она разминулась с Луной [Л5], и обнаружение поворота траектории на 11о не представляло особых сложностей. Но, странным образом, об этом повороте ничего не говорится даже в книге [Л5], где полёт «Луны-1» описан весьма подробно.
Поскольку официальные источники молчат, обратимся к источникам неофициальным. Баллистики, обсчитывавшие первые полёты к Луне, недоумевали: выходило, что поворот оказался значительно меньше того, который был бы по ньютоновской теории. Заказчик ставил задачи со «странными» исходными данными, по расчёту управления лунным спутником. Между тем, малость поворота траектории «Луны-1» могла быть обусловлена малостью радиуса области лунного тяготения, т.е., прохождением аппарата лишь по небольшому участку на её периферии.
Далее, аппарат «Луна-3», запущенный 4 октября 1959 г., впервые произвёл пассивный облёт Луны. Траектория облёта состояла из гиперболического участка в области тяготения Луны и последующего эллиптического разворота, обусловленного тяготением Земли. Из траекторных данных, имеющихся в свободном доступе [Л5], прямо следует малость области тяготения Луны: оценка независимых исследователей для высоты его границы над лунной поверхностью составила 10000 км.
Теперь спрашивается: известны ли случаи, когда искусственный спутник Луны имел орбиту с апоселением (наиболее удалённой точкой от Луны) выше, чем 10000 км от поверхности? В 60-е – 70-е годы ХХ века, максимальную высоту апоселения имел «Лунар Орбитер-5»: 6050 км [К5]. Впоследствии эта цифра была увеличена: американский зонд Clementine (1994) имел высоту апоселения 8300 км, американский зонд Lunar Prospector (1998) – 8500 км [ВЕБ18], а китайский «Чан Э» (2007) – 8600 км [ВЕБ19]. Что касается зонда Kaguya (2007), то для высоты его первого, самого высокого, апоселения Японское космическое агентство назвало цифру 11741 км [ВЕБ20], и её повторили многие информационные агентства. Но эта цифра может быть несколько завышена, поскольку она явилась результатом прогноза, сделанного сразу же после главного тормозного манёвра [ВЕБ20]. Во всяком случае, все названные цифры значительно меньше, чем радиус сферы действия Луны.
Поразительно то, что отечественные и американские специалисты, ещё полвека назад запускавшие первые аппараты к Луне, отлично знают про малость области её тяготения. Но эта информация до сих пор представляет собой важную научную тайну, поэтому современные японские, китайские и европейские аппараты, отправляемые к Луне, нарываются на гравитационные сюрпризы. Известно про два проекта, в которых производились попытки захвата аппарата тяготением Луны на удалениях, значительно больших 10000 км. В обоих случаях официально сообщалось, что захват произошёл – но новоиспечённый спутник Луны оказывался не в состоянии выполнять запланированную научную программу.
Первый из этих двух проектов – полёт японского зонда MUSES-A (Hiten), запущенного в 1990 г. «Во время… первого пролёта Луны предстояло выполнить две задачи: использовать гравитационное поле Луны для увеличения скорости КА и для повышения апогея орбиты, а также отделить от основного КА малый субспутник «Хагоромо», которому предстояло стать искусственным спутником Луны… Отделение «Хагоромо» от базового блока произошло в соответствии с программой полёта в тот момент, когда «Хитен» пролетал на высоте 20 тыс. км от поверхности Луны. Однако собственный передатчик «Хагоромо» вышел из строя, и в центре управления на Земле не удалось получить никаких данных с аппарата и подтвердить его выход на окололунную орбиту. Позже, используя большой оптический телескоп, японским астрономам удалось увидеть, как «Хагоромо» движется по орбите Луны… но как научный аппарат «Хагоромо» был потерян» [ВЕБ21]. Эта официальная версия о выходе «Хагоромо» на окололунную орбиту выглядит неубедительно, поскольку в ней умалчивается о том, удался ли запланированный гравитационный манёвр основного модуля. Более того, в дальнейшем Hiten совершил, как сообщалось, ещё несколько гравитационных манёвров на пролётах вблизи Луны – но, опять же, японцы умалчивали о подробностях. Похоже, хвалиться-то было нечем. Зато известно, что на одиннадцатом пролёте, когда аппарат был переведён на окололунную орбиту, он проходил на расстоянии всего 423 км от поверхности Луны [ВЕБ21]!
Второй же из этих проектов – полёт зонда SMART-1 Европейского космического агентства (ЕКА, ESA). Зонд был выведен ракетой-носителем на околоземную стартовую орбиту в сентябре 2003 г. Затем зонд в течение года с небольшим "раскачивал" орбиту с помощью плазменного двигателя малой тяги, подтягивая апогей к орбите Луны. Планировался захват зонда тяготением Луны при первом же входе в т.н. сферу действия Луны, на удалении от неё около 60000 км. Затем, после снижения на окололунную орбиту, планировалось сделать множество фотографий лунной поверхности. В частности, обещали заснять следы пребывания американских астронавтов на Луне - поэтому миссия была широко прорекламирована.
Специалисты хорошо знали цену этим обещаниям - известно, что Луна чуть не постоянно "скрипит" из-за слабых "лунотрясений", что там имеет место электростатическое "оползание" грунта, и что движение линии терминатора (границы день-ночь) по поверхности Луны сопровождается пыльной бурей. В течение месяца полоса пыльной бури дважды прокатывается по поверхности Луны, и наивно полагать, что от "следов астронавтов" что-то могло сохраниться. Специалисты знали об этом, но помалкивали – как и о том, что лунное тяготение действует на космические аппараты не далее 10000 км от поверхности Луны. Поэтому в ESA не подозревали, что SMART-1 далеко не долетит до области тяготения Луны, и что этот проект обречён на провал.
Теоретически, зонд следовало ввести хотя бы в ближайшую к Земле область сферы действия Луны – с селеноцентрической скоростью, меньшей чем местная круговая – и зонд захватился бы тяготением Луны. Но сразу после того как такой ввод был произведён, что-то пошло «не так». На официальном сайте ESA перестали появляться обновления, оперативно освещавшие полёт SMART-1. После неприлично затянувшейся паузы, ESA задним числом сообщило о том, что зонд был захвачен тяготением Луны, затем, на малой тяге, переведён на низкую полярную орбиту, и даже передал на Землю несколько фотографий участков лунной поверхности. После очередной паузы, эти фотографии были опубликованы. Приглядевшись, специалисты узнали в них снимки тридцатилетней давности, сделанные другими космическими аппаратами. После ещё нескольких месяцев молчания о том, чем занимается SMART-1 в окололунном пространстве, ESA заявило о том, что зонд выполнил свою миссию и будет разбит о поверхность Луны. «SMART-1 спрятал концы в лунную пыль» - издевались информационные агентства. Даже неспециалисты подозревали, что ESA дурачило общественность! О том, как это всё происходило в реальном времени, красноречиво свидетельствует весёлая дискуссия на форуме портала "Новости космонавтики" [ВЕБ22]; доступен также конспект этой дискуссии [ВЕБ23].
Кстати, вывод о лжи ESA можно было сделать сразу после того, как были опубликованы данные [ВЕБ24], описывающие «захват» зонда тяготением Луны. Этих данных достаточно для реконструкции, во-первых, полуэллипса подлёта, по которому зонд двигался в поле тяготения Земли перед тем как, вблизи апогея, войти в сферу действия Луны, и, во-вторых, первого полуэллипса снижения в сфере действия Луны. Легко убедиться в том, что эти два полуэллипса не «сшиваются» друг с другом – а, значит, официальная информация о захвате зонда тяготением Луны и о его дальнейшей судьбе является фальсификацией.
Что же в действительности произошло с зондом SMART-1? По-видимому, при малости области тяготения Луны, зонд просто не вошёл в эту область – и, как ни в чём не бывало, продолжил свой полёт по эллиптической орбите вокруг Земли. Самое разумное, что могли сделать руководители полёта в такой ситуации – это проверить, не «захватится» ли зонд на следующем пролёте через сферу действия Луны. До срока завершения миссии можно было сделать ещё несколько попыток такой проверки. Но чуда не произошло. Чтобы зонд добрался до области лунного тяготения и в самом деле захватился, требовалось ещё поднять апогей и значительно увеличить апогейную скорость. Увы – на малой тяге и с почти израсходованными запасами рабочего вещества – выполнение этой задачи было совершенно нереально. По всей вероятности, зонд до сих пор летает по эллиптической орбите, которая почти дотягивается до орбиты Луны.
А всё потому, что, на расстоянии уже в несколько десятков тысяч километров от Луны, её тяготение, вопреки официальным воззрениям, не действует.
Дата добавления: 2019-02-07; просмотров: 247;