Начальное и граничные условия, их физическое толкование. Постановка задач
Частные случаи уравнения теплопроводности
1. Распространение тепла без тепловыделения. Если внутри рассматриваемой области нет источников тепла, т.е.
, то уравнение (1.185) принимает более простой вид:
.
| (1.186) |
Уравнение (1.186) называется уравнением свободного теплообмена.
2. Установившийся поток тепла. Для стационарного процесса теплообмена, т.е. когда температура в каждой точке тела не меняется со временем
, уравнение приобретает форму уравнения Пуассона:
,
| (1.187) |
где
.
3. Установившийся поток тепла без тепловыделения. В этом случае
и
, поэтому распределение температуры подчиняется уравнению Лапласа:
.
| (1.188) |
С помощью уравнения (1.188) можно ответить на вопрос: каково должно быть распределение температуры
внутри тела, чтобы дальнейшего теплообмена не происходило. Поясним: последнее возможно, если на границе области поддерживать постоянную температуру (различную в различных точках границы). Но это уже связано с вопросом о граничных и начальных условиях, к которому мы и переходим.
Начальное и граничные условия, их физическое толкование. Постановка задач
Чтобы определить температуру внутри тела в любой момент времени, недостаточно одного уравнения (1.185). Необходимо, как следует из физических соображений, знать еще распределение температуры внутри тела в начальный момент времени (начальное условие) и тепловой режим на границе тела (граничное условие).
Начальное условие в отличие от уравнения гиперболического типа задается только одно, т.к. исходное уравнение содержит лишь первую производную по времени.
Граничные или краевые условия могут быть различны в зависимости от температурного режима на границе тела. Основными видами тепловых режимов являются следующие: I – на границе поддерживается определенная температура; II – на границу подается определенный тепловой поток; III – происходит теплообмен с внешней средой, температура которой известна. Им соответствуют граничные условия первого, второго, третьего рода.
Сформулируем прежде условия для одномерного уравнения теплопроводности.
Начальное условие состоит в задании функции
в начальный момент времени
:
.
| (1.189) |
Выведем граничные условия в случаях I – III.
1. На концах стержня (или на одном конце) задается температура
, ,
| (1.190) |
где
,
- функции, заданные в некотором промежутке
, причем
есть промежуток времени, в течении которого изучается процесс. В частности,
,
, т.е. на концах поддерживается постоянная температура
и
.
2. На одном из концов (или на обоих) задано значение производной искомой функции. Например, для сечения 
.
| (1.191) |
Дадим физическое толкование этому условию. Пусть
- величина теплового потока, т.е. количество тепла, протекающего через торцевое сечение
в единицу времени. Тогда уравнение теплового баланса для элемента стержня
в период времени
, как и при выводе уравнения (1.183) запишется в виде
.
Сократив на
и перейдя к пределу при
, получим
. Таким образом, имеем условие (1.192), в котором
- известная функция, выражающаяся через заданный поток тепла
по формуле
.
Аналогично для сечения
, через которое протекает количество тепла
, найдем
.
Следовательно, условие
или
имеет место в случае, когда на соответствующем конце стержня задан тепловой поток, втекающий или вытекающий. В частности, если концевое сечение теплоизолировано, то
или
, и следовательно,
или
.
3. На одном из концов (или на обоих) задается линейное соотношение между функцией и ее производной. Например, для сечения 
.
| (1.192) |
Условие типа (1.192) используется в случае процесса теплоотдачи, т.е. переноса тепла от тела к окружающей среде. Закон теплообмена сложен; но для упрощения задачи он может быть принят в виде закона Ньютона. Согласно эмпирическому закону Ньютона количество тепла, отдаваемого в единицу времени с единицы площади поверхности тела в окружающую среду, температура
которой известна, пропорционально разности температур поверхности тела и окружающей среды:
,
где
- коэффициент теплообмена (или внешней теплопроводности).
Можно определить тепловой поток через сечение стержня, воспользовавшись двумя выражениями в силу закона сохранения энергии. Согласно закону Ньютона тепловой поток
, вытекающий через сечение
, равен
.
С другой стороны, такой же тепловой поток должен подводиться изнутри путем теплопроводности. Поэтому согласно закону Фурье
.
Приравнивая правые части этих выражений, найдем
.
Отсюда получаем математическую формулировку условия в виде
,
в котором положено
,
.
Заметим, что граничные условия, наложенные на значения функции
, называют условиями первого рода. Граничные условия, наложенные на значение производной
, называют условиями второго рода. А условия, наложенные как на значение функции
, так и на значение производной
, называют условиями третьего рода.
В случае граничных условий вида (1.190), (1.191), (1.192) говорят соответственно о первой, второй, третьей краевых задачах для уравнения теплопроводности. Начальное условие для всех указанных краевых задач остается тем же самым и дается равенством (1.189).
Так, первая краевая задача состоит в отыскании решения
уравнения
при
,
,
удовлетворяющего условиям
,
,
,
,
.
Аналогично ставятся другие краевые задачи с различными комбинациями граничных условий при
и
.
Кроме названных задач довольно часто встречаются предельные случаи – вырождения основных краевых задач. Одним из таких случаев является задача Коши, которая состоит в отыскании решения
в неограниченной области, удовлетворяющего только начальному условию.
Если процесс теплопроводности изучается в очень длинном стержне, таком что влияние температурного режима, заданного на границе, в центральной части стержня оказывается весьма слабым в течение небольшого промежутка времени и определяется в основном лишь начальным распределением температуры, то тогда считают, что стержень имеет бесконечную длину и ставят задачу Коши.
ЗАДАЧА КОШИ для «бесконечного» стержня (идеализация достаточно длинного стержня) математически формулируется так: найти решение
уравнения теплопроводности в области
,
, удовлетворяющее начальному условию
,
где
- заданная функция.
Если участок стержня, температура которого нас интересует, находится вблизи одного конца и далеко от другого, то в этом случае температура практически определяется температурным режимом близкого конца и начальным условием. При этом стержень считают полубесконечным. Приведем в качестве примера формулировку первой краевой задачи для «полубесконечного» стержня: найти решение
уравнения теплопроводности в области
,
, удовлетворяющее условиям
,
,
,
,
где
и
- заданные функции.
Для уравнения (1.185) теплопроводности в пространстве
, ограниченном поверхностью
, начальное условие записывают в виде
,
а на границе
области
функция
должна удовлетворять одному из условий:
1)
(граничное условие 1-го рода);
2)
(граничное условие 2-го рода);
где
- внешняя нормаль к поверхности
; в частности, если поверхность
теплоизолирована, то
;
3)
(граничное условие 3-го рода).
Здесь
- текущая точка поверхности
.
Если распределение температуры внутри тела стационарно, то для однозначного определения функции
не надо задавать начальное условие, т.к. в начальный и во все последующие моменты времени распределение температуры одно и то же, а достаточно знать лишь тепловой ражим на границе
тела. Разыскание закона стационарного распределения температуры сводится к решению уравнения Пуассона (1.187) или уравнения Лапласа (1.188) по одному из граничных условий, в которых функции
и
не зависят от
. Задача для уравнений Пуассона и Лапласа с граничным условием
называется задачей Дирихле, а с условием
- задачей Неймана.
Доказано, что решение каждой из одномерных краевых задач первой, второй и третьей единственно в классе функций, непрерывно дифференцируемых в области
,
. Для трехмерных и двумерных краевых задач решение единственно в классе функций, удовлетворяющих условиям применимости соответственно формулы Остроградского и формулы Грина. Решение задачи Коши для уравнения теплопроводности в классе функций, ограниченных во всем пространстве, единственно и устойчиво.
| <== предыдущая лекция | | | следующая лекция ==> |
| Графическая форма представления прямоугольников | | | Искусство палеолита |
Дата добавления: 2018-11-25; просмотров: 880;

.
,
.
.
,
,
.