Основные параметры кулачковых механизмов.

В процессе работы толкатель совершает в соответствии с рисунком 3 движения:

1. поступательно вверх – в этом случае толкатель взаимодействует с участком 01;

2. стоит на месте (выстой) –

контакт с участком 12.

Здесь постоянный радиус кривизны.

3. толкатель опускается (сближение) – контакт с участком 23.

В первой фазе подъему толкателя (фаза удаления) на профиле кулачка соответствует угол ψудал;

в фазе выстоя – ψвыс;

в фазе сближения – ψсбудал + ψвыс + ψсб = ψраб – рабочий угол профиля кулачка.

Угол профилякулачка можно показать только на кулачке.

Угол поворота кулачка, соответствующий выше указанным фазам перемещения толкателя, определяют, используя метод обращения движения, в соответствии с которым всей системе, включая стойку, мысленно сообщают движение с угловой скоростью (ω1).Тогда в обращенном движении кулачок становится неподвижным:

ω*1 = ω1 + (–ω1) = 0,

а ось толкателя вместе со стойкой будут перемещаться в направлении (–ω1). И угол поворота кулачка, соответствующий той или иной фазе движения, определяется по углу поворота оси толкателя в обращенном движении на соответствующем участке. Ось толкателя в обращенном движении в любом положении будет касаться окружности радиуса rе.

Поворот кулачка на участке :

01 – φ01 12 – φ12 23 – φ23

рабочий угол поворота кулачка φраб:

φраб = φ01 + φ12 + φ23

(уб) (выс) (сб)

Всегда независимо от схемы механизма φраб = ψраб, а

φуд ≠ ψуд, φвыс ≠ ψвыс, φсб ≠ ψсб,

для всех схем, кроме кулачкового механизма с центральным толкателем.

6.3 Построение графика перемещений толкателя при заданном профиле кулачка.

Перемещения отсчитываются от начальной окружности радиуса ro.

Точка В принадлежит толкателю, который повора - чивается вокруг оси С, т.е. т.В перемещается по дуге окружности радиусом r = lт. Из точки 1 проводим окружность r = lт до пересечения с окружностью, радиус которой равен расстоянию между тО1 и тС: r = aw. Точка пере сечения т.С1 – положение оси вращения толкателя в обращенном движении, когда толкатель контактирует с поверхностью кулачка в

точке 1. Из т.С1 проводим дугу окружности r = lт до пресечения с начальной окружностью. Тогда перемещение точки В будет равным длине дуги 11*. На участке 12 толкатель не перемещается. На участке 23 перемещение точки В ищется аналогично перемещению на участке 01.

SB,мм

6.4 Понятие об угле давления.

Угол давления – угол между вектором линейной скорости выходного звена (толкателя) и реакцией, действующей с ведущего звена (кулачка) на выходное звено. Эта реакция без учета сил трения направлена по общей нормали к взаимодействующим поверхностям. Угол давления определяется экспериментально. Для кулачкового механизма с поступательно движущимся толкателем допустимый угол давления равен: [θ] = 25Ίч35є.

Для кулачкового механизма с качающимся толкателем допустимый угол давления равен: [θ] = 35Ίч40є.

Реакцию можно разложить на две составляющие: и .

Если, в силу каких-либо причин, угол давления будет увеличиваться, то будет уменьшаться, а – увеличиваться.

При достижении угла давления θ больше допустимого [θ], возможен перекос оси толкателя в направляющей и его заклинивание.

6.4.1 Вывод формулы для определения угла давления в кулачковом механизме.

Из треугольника ΔКВР:

(1)

КР = О1Р – О1К = О1 – е

КВ = so + sB

(2)

Треугольник ΔО1ВР подобен треугольнику ΔАВС. Тогда

à

vB1= ω1·O1B

Подставим это выражение в (2):

Знак “ ” – для правой внеосности;

знак “ + ” – для левой внеосности.

Угол давления в кулачковом механизме зависит от размеров кулачковой шайбы: чем она больше, тем угол давления меньше.

6.4.2 Понятие об отрезке кинематических отношений.

Если из точки В для какого-то текущего положения толкателя проведем линию, параллельную О1Р, а из центра – || nn, то при их пересечении получим точку D:

BD = O1P = vB2 / vB1 =vqB2

Из рисунка следует, что зная перемещение точки В толкателя и, найдя максимальный отрезок кинематического отношения, можно определить положение центра вращения кулачка, отложив внешним образом от точки D допустимый угол давления.

Лекция 14.

6.5 Синтез (проектирование) кулачковых механизмов по заданному закону движения толкателя.

Под синтезом кулачкового механизма будем понимать построение профиля кулачка, в каждой точке которого угол давления не превышал бы допустимого, а размеры самого профиля были бы минимальны.

Данная задача решается в 3 этапа:

1. Строится график заданного закона движения (как правило либо график ускорения точки В толкателя как функция угла положения – aB = f(φ1), либо график линейной скорости точки В – vB= f(φ1)). Требуется построить график перемещения точки В как функцию от угла поворота кулачка sB= f(φ1).

2. Определение минимального размера кулачковой шайбы при условии, что угол давления в любой точке профиля не превышает допустимого.

3. Построение профиля кулачка.

6.5.1 Построение закона движения оси толкателя.

Дано: вид графика aB = f(φ1), , jр=yр

максимальный ход толкателя hт

Требуется построить: графики vB= f(φ1), sB= f(φ1)

b – база графика (сколько отводиться на график по оси φ1).

Порядок построения:

1. Произвольно выбирается база графика.

2. Считаем масштаб по оси φ1:

, мм/град

3. Если задан симметричный вид графика, то:

φуд = φсб à bуд = bсб

В общем случае закон движения может быть несимметричным.

4. Зададимся произвольным образом а1= 40 ч 50 мм. Тогда

а2= а1

Возникает вопрос: каким должно быть расстояние х ?

Его находят из условия равенства площадей под и над осью φ1.

Почему надо выдерживать равенство площадей?

Физический смысл площади под кривой ускорения на площадке х – скорость толкателя на данном участке.

Физический смысл площади под кривой скорости на участке φуд – максимальное удаление (перемещение т.В толкателя). Если площади не будут равновеликими, то толкатель, поднявшись на одну величину, опустится на другую.

Построив график ускорения, строим график скорости методом графического интегрирования, выбрав отрезок интегрирования ОК1. Интегрируя график скорости (с отрезком интегрирования ОК2, обычно ОК1=ОК2), получаем график перемещения т.В толкателя. Полученную ломаную линию заменяют плавной кривой.

Расчет масштаба:

(уSВ)max на графике перемещений получается автоматически, и его величина зависит от отрезка ОК2. Тогда, зная ход толкателя, масштаб перемещения будет:

μ=

Затем в первом приближении принимаем, что кулачок вращается равномерно, тогда угол поворота кулачка пропорционален времени поворота, и оси φ и t совпадают, но каждая ось имеет свой масштаб.

где b – в [мм]; частота вращения кулачка n – [об/мин]; φраб – [град].

Масштаб скорости:

Масштаб ускорения:

6.5.2 Определение минимального радиуса кулачковой шайбы по известному закону движения толкателя.

6.5.2 а) для кулачка с поступательно движущимся толкателем:

Дано: sB=f(φ1); vB= f(φ1); [θ]

Определить: ro min

при условии, что угол давления в любой точке профиля кулачка не превышает допустимый.

Порядок построения графика кинематических отношений:

1. проводится вертикальная ось sB,мм вдоль которой от произвольно выбранной точки Во (начало отсчета) откладываются отрезки перемещения т.В, взятые с графика sB=f(φ1). Масштаб по оси μs* перемещений может быть равен масштабу графика перемещений μs, а может быть и другим μs*, мм/м.

2. в каждой из полученных точек определяют отрезки кинематических отношений xni, подсчитанные в масштабе μs*, и откладывают их под углом в 90є по направлению вращения кулачка.

, мм, где Wk-угловая скорость кулачка

Там, где отрезок имеет максимальное значение, восстанавливается перпендикуляр, и под углом [θ] проводится луч.

 

3. Если учитывать реверс, то второй луч проводят через конец наибольшего отрезка кинематических отношений, под углом [θ] κ λучу, перпендикулярному отрезку Xnmax.

Если реверс не учитывать, второй луч проводят через т.Во под углом [θ]. Если допускается внеосность, то она будет равна е1*. Если внеосность равна нулю, то центр кулачка будет в т.О1:

Zro = O1Bo ,мм Z0=Zros*, м

Если внеосность задана в техническом задании, например левая, то проводят прямую, параллельную прямой О1Во и отстоящая от нее на расстоянии, равном величине внеосности е1, с учетом масштаба μs*. В итоге получают точку О1**.

6.5.2 б) для кулачка с качающимся толкателем:

Порядок построения: В произвольном месте выбирается точка Со, из которой радиусом, равным длине толкателя, проводят дугу окружности. По хордам откладывают перемещения т.В. Полученные точки последовательно соединяют с т.Со.

1. На этих прямых и на их продолжении откладываются отрезки кинематических отношений, посчитанные в масштабе μs* по вышеприведенной формуле. Там, где отрезок имеет максимальное значение, восстанавливается перпендикуляр, и под углом [θ] проводится луч.

2. Если учитывать реверс, то второй луч проводят под углом [θ] ξς перпендикуляра к оси VqB. Центр кулачка будет в т.О1*:

ro = O1Bo

Если реверс не учитывать, то второй луч проводят через т.Во под углом [θ] ξт перпендикуляра к отрезку xnmax правой ветви графика . Центр кулачка будет в т.О1*:

ro = O1*Bo

Лекция 15.

6.5.3 Построение профиля кулачка.

а) с поступательно движущимся толкателем (рис. 6.5.3.а):

Дано:

ro min, внеосность левая е, φраб = ψраб, ωк1, sB = f(φ1)

Требуется построить профиль кулачка.

В обращенном движении кулачок вращается с угловой скоростью, раной: ω1 + (–ω1) = 0.

Порядок построения:

На окружности, радиусом r =ro , проведенной в масштабе μl, с левой стороны от оси О1 на расстоянии е выбирается точка Во (пересечение оси толкателя, отстоящей на величину е от точки О1, с окружностью ro min). Точку Во соединяют с центром О1. От полученного луча ВоО1 в направлении (–ω1) откладывают угол φрабраб и проводят луч О1В10. Полученная дуга ВоВ10 делится на 10 равных частей. В каждой из позиций 1,2… проводится положение оси толкателя в обращенном движении, при этом ось толкателя, перемещаясь в направлении (–ω1), будет все время касаться окружности радиуса е, проведенной из центра О1 с учетом масштаба μl. В каждой из позиций от точек 1,2,3… откладывают перемещения т.В толкателя вдоль оси толкателя, взятые с графика перемещений с учетом соотношения масштабов μl и μs. Полученные точки 1*,2*,3*… соединяют плавной кривой и получают центровой или теоретический профиль. Для построения рабочего профиля необходимо знать радиус ролика толкателя. Если он не задан, то его выбирают из конструктивных соображений:

rp= ro min

Кроме того, радиус ролика должен быть таким, чтобы при построении профиля кулачка не было заострения в вершине кулачка. Выбрав радиус ролика, из любых точек теоретического профиля кулачка (чем чаще, тем лучше) проводят дуги окружности r=rp внутренним образом. Проведя огибающую к дугам, получают рабочий профиль кулачка. Если требуется построить профиль кулачка с поступательно движущимся толкателем и внеосностью е=0, то порядок построения профиля будет таким же, только ось толкателя будет проходить через центр вращения кулачка О1.

 

рис. 6.5.3.а рис. 6.5.3.б

б) с качающимся толкателем (рис. 6.5.3.б):

Дано:

ro min, lт, φраб = ψраб, ωк1, sB = f(φ1), aw (из чертежа для определения ro min)

Требуется построить профиль кулачка.

Порядок построения:

В масштабе μl проводятся окружности радиусами ro и aw. В произвольном месте окружности с r = aw выберем т.С0. Соединим точку С0 с точкой О1. От полученного луча в направлении (–ω1) отложим угол φраб = ψраб, получим точку С10. Дугу С0С10 разделим на 10 равных частей (получим точки С123…– положение оси толкателя в обращенном движении). Из полученных точек проводим окружности радиусом lт до пересечения с окружностью радиуса ro_min. Из полученных точек 1,2,3… по хордам соответствующих дуг откладывают перемещения т.В толкателя, взятых с графика перемещения с учетом масштаба μl. Полученные точки 1*,2*,3*… соединяют плавной кривой – теоретический профиль кулачка. Радиусом ролика проводят дуги во внутрь и строят огибающую. Это и есть действительный профиль кулачка.

 


<== предыдущая лекция | следующая лекция ==>
Коллекция ArrayList | Пример использования делегата




Дата добавления: 2018-11-25; просмотров: 1944;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.035 сек.